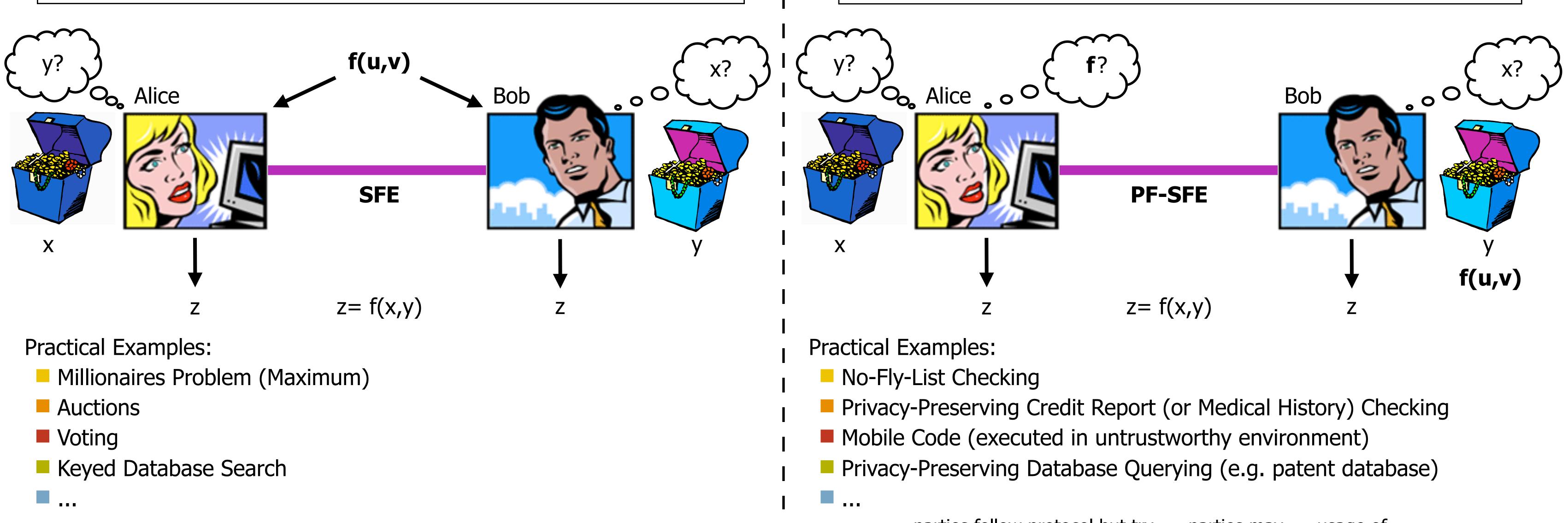
TECHNISCHE FAKULTÄT

Elektrotechnik, Elektronik und Informationstechnik Chemie- und Bioingenieurwesen Werkstoffwissenschaften Maschinenbau

Practical Secure Function Evaluation


Diplomarbeit of Thomas Schneider, Supervision: Prof. V. Strehl and V. Kolesnikov, PhD {thomas.schneider@informatik.stud, strehl@informatik}.uni-erlangen.de, kolesnikov@research.bell-labs.com

Secure Function Evaluation (SFE) allows two parties Alice and Bob to securely evaluate a function f(u,v) on their private inputs x and y:
each party learns the result z = f(x,y)

Secure Function Evaluation of Private Functions (PF-SFE) - same as SFE with additionally f being private:
f is known by Bob only

each party learns nothing about the other party's secret y resp. x

Alice learns nothing about f (besides size, #inputs and #outputs)

Contents and Contributions of this Thesis:

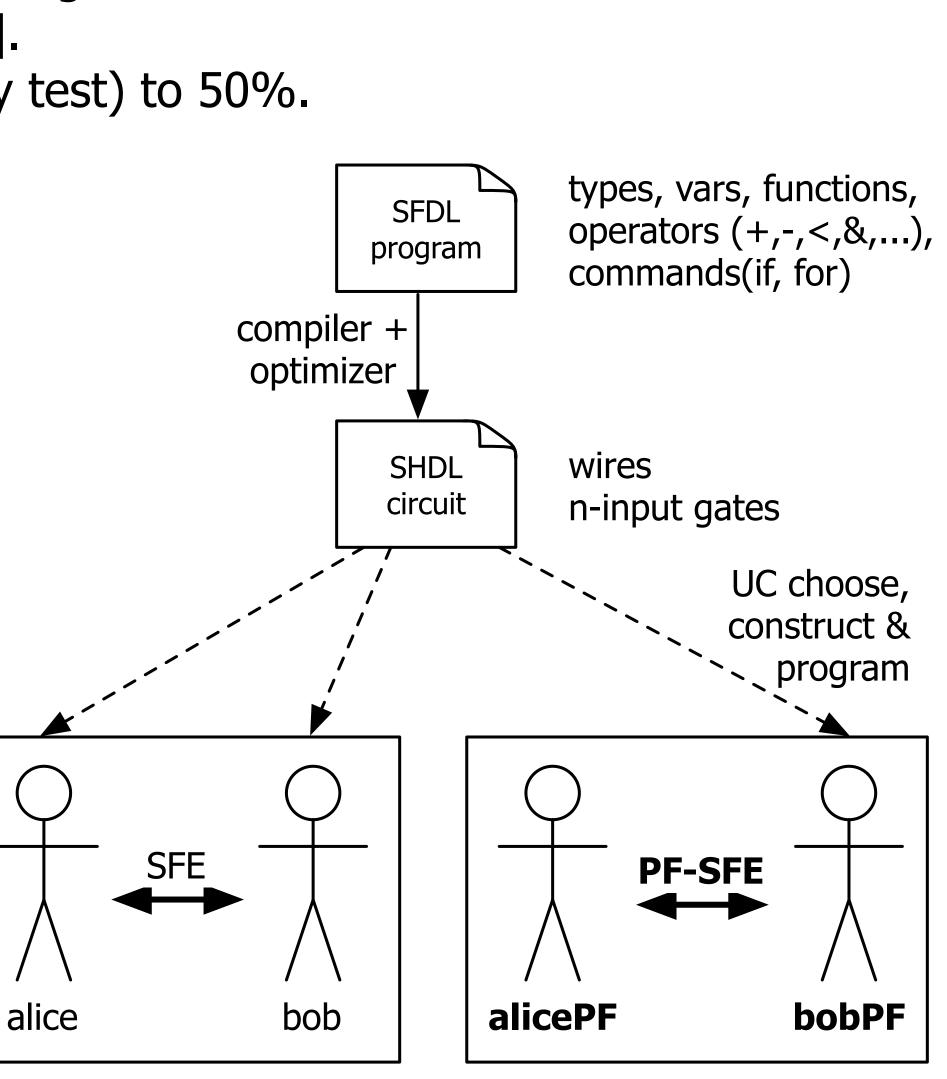
Summary and comparison of **known SFE protocols** with different representations of the boolean function f as boolean circuit or ordered binary decision diagram (OBDD).

Extension of OBDD-based SFE protocol [KJGB06] (secure in semi-honest model) to malicious model and **OBDD-based PF-SFE protocol** with small overhead.

PF-SFE can be reduced to SFE of a Universal Circuit (UC) that can be programmed to compute any function f of size k gates. Our **practical UC construction**^{*} [KS08] is up to 50% smaller than the best UC of Valiant [Val76] when used in today's PF-SFE.

parties follow protocol but tryparties mayusage ofto learn additional informationcheat arbitrarilyRandom Oracles

				·	!	
	Function Represent.	SFE Protocol		⁻ Security malicious		Evaluation Speed (Encryption Scheme)
		Yao [Yao86] Fairplay [MNPS04] GESS [Kol05] improved SFE	X X X X X	X X	X	slow (E _{spec}) medium (H) very fast (XOR) medium/very fast (H/XOR)
		OBDD SFE [KJGB06] improved OBDD SFE	X X	X		slow (E _{spec}) fast (E)
that s. aller SFE.	sal circuit \cdots	$\begin{array}{c} \text{in}_{1}, \dots, \text{in}_{u} \\ \text{UC} \\ S_{2k \geq u} \\ 2k \\ 2k \\ \\ U_{k} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	input selection output selections	block		$(1, \dots, in_k in_{k+1}, \dots, in_{2k})$


Our improved SFE protocol* allows free evaluation of XOR gates:
Based on SFE protocols Fairplay [MNPS04] & GESS [Kol05].
Improves many important functions (e.g. addition, equality test) to 50%.
UC-based PF-SFE protocols can be improved to even 25%.

Implementation of **FairplayPF**, an extension of the well-known Fairplay SFE system for practical PF-SFE. **http://thomaschneider.de/FairplayPF**

Friedrich-Alexander-Universität Erlangen-Nürnberg

TON THE FRIDE ALE

out₁, ..., out₁,

FairplayPF

 $out_1, ..., out_{k/2}$ $out_{k/2+1}, ..., out_k$

Bibliography

[KJGB06] Louis Kruger, Somesh Jha, Eu-Jin Goh, and Dan Boneh. **Secure function evaluation with ordered binary decision diagrams.** In Proc. ACM CCS, pages 410– 420. ACM Press, 2006.

[Kol05] Vladimir Kolesnikov. **Gate evaluation secret sharing and secure one-round two-party computation**. In Advances in Cryptology – ASIACRYPT 2005, volume 3788 of LNCS, pages 136–155. Springer, 2005.

[KS08] Vladimir Kolesnikov and Thomas Schneider. **A practical universal circuit construction and secure evaluation of private functions**. In Financial Cryptography and Data Security, FC08, LNCS. Springer, 2008.

[MNPS04] Dahlia Malkhi, Noam Nisan, Benny Pinkas, and Yaron Sella. Fairplay - a secure two-party computation system. In USENIX, 2004.

[Val76] Leslie G. Valiant. **Universal circuits (preliminary report)**. In Proc. 8th ACM Symp. on Theory of Computing, pages 196–203, New York, NY, USA, 1976. ACM Press.

[Yao86] Andrew C. Yao. **How to generate and exchange secrets**. In Proc. 27th IEEE Symp. on Foundations of Comp. Science, pages 162–167, Toronto, 1986. IEEE.

Fairplay