
https://doi.org/10.1007/s00145-023-09472-4
J Cryptol (2023) 36:34

Research Article

Breaking and Fixing Garbled Circuits When a Gate has
Duplicate Input Wires

Raine Nieminen · Thomas Schneider
Technical University of Darmstadt, Darmstadt, Germany

nieminen@encrypto.cs.tu-darmstadt.de
schneider@encrypto.cs.tu-darmstadt.de

Communicated by David Pointcheval and Nigel Smart

Received 22 September 2022 / Revised 6 June 2023 / Accepted 7 June 2023

Abstract. Garbled circuits are a fundamental cryptographic primitive that allows two
or more parties to securely evaluate an arbitrary Boolean circuit without revealing any
information beyond the output using a constant number of communication rounds. Gar-
bled circuits have been introduced by Yao (FOCS’86) and generalized to the multi-party
setting by Beaver, Micali and Rogaway (STOC’90). Since then, several works have
improved their efficiency by providing different garbling schemes and several imple-
mentations exist. Starting with the seminal Fairplay compiler (USENIX Security’04),
several implementation frameworks decoupled the task of compiling the function to be
evaluated into a Boolean circuit from the engine that securely evaluates that circuit, e.g.,
using a secure two-party computation protocol based on garbled circuits. In this paper,
we show that this decoupling of circuit generation and evaluation allows a subtle attack
on several prominent garbling schemes. It occurs when violating the implicit assump-
tion on the circuit that gates have different input wires which is most often not explicitly
specified in the respective papers. The affected garbling schemes use separate calls to
a deterministic encryption function for the left and right input wire of a gate to derive
pseudo-random encryption pads that are XORed together. When a circuit contains a
gate where the left and right input wire are the same, these two per-wire encryption pads
cancel out and we demonstrate that this can result in a complete break of privacy. We
show how the vulnerable garbling schemes can be fixed easily.

Keywords. Secure multi-party computation, Garbled circuits, Garbling schemes, Cir-
cuits, Attack, Vulnerability.

1. Introduction

Secure Multi-Party Computation (MPC), also knows as Secure Function Evaluation
(SFE), enables two or more parties to jointly evaluate a function securely over their
private inputs. In 1986, Andrew Yao introduced Garbled Circuits (GCs) [39], the first
general technique for two-party SFE, which was later generalized to the multi-party set-
ting by Beaver-Micali-Rogaway (BMR) [2]. GCs allow to construct constant-round MPC
© The Author(s) 2023

0123456789().: V,-vol

http://crossmark.crossref.org/dialog/?doi=10.1007/s00145-023-09472-4&domain=pdf

 34 Page 2 of 12 R. Nieminen, T. Schneider

protocols and hence are well-suited for high latency network settings, where multi-round
protocols such as the Goldreich-Micali-Wigderson (GMW) protocol [12] are often less
efficient [37]. Research on GCs has been very active and many different constructions
have been proposed that improve the concrete communication and computation complex-
ities, e.g., Point-and-Permute [2], 3-Row Reduction [31], Free-XOR [18], Garbling via
AES [20], Fixed-key AES garbling [3], HalfGates [41], and Three-Halves Garbling [36].

Garbled circuits allow to securely evaluate a function that is represented as a Boolean
circuit, e.g., consisting of AND and XOR gates. Several frameworks have been built
to compile a high-level specification of the function to be evaluated securely (e.g., in
Verilog, ANSI-C, or a domain specific language) into a Boolean circuit that is then
evaluated using a GC engine. Some examples for such frameworks are Fairplay [28],
FairplayMP [5], TASTY [14], FastGC [15], VMCrypt [27], PAL [30], PCF [19], CBMC-
GC [11], TinyGarble [38], Frigate [29], and HyCC [8].

The basic idea of a GC is to assign to each wire wi of the circuit two random-looking
wire labels w̃0

i , w̃
1
i . The length of each of these labels is the computational security pa-

rameter κ (often set to κ = 128 in implementations) such that wire label w̃0
i corresponds

to plaintext value 0 and wire label w̃1
i corresponds to plaintext value 1. As the wire labels

look random, the evaluator (who obtains exactly one label per wire) learns no informa-
tion about the underlying plaintext value. For each gate in the circuit, a garbled table is
generated by encrypting for all 22 = 4 possible input combinations the corresponding
output label using the corresponding input labels. To not leak any information from the
position in the garbled table, its entries are permuted randomly. To preserve privacy, a
crucial property required for privacy of GCs is that given a combination of two input
labels only the corresponding output label can be decrypted from the garbled table.

Since garbling (and evaluation of the garbled circuit) requires calls to an encryption
function, this is a natural point for optimizations and several encryption functions have
been proposed and used in the literature (we give a summary in Sect. 3 and Table 1). In
this paper, we show an attack and fixes on garbling schemes that use separate calls to
a deterministic encryption function for the left and right input wire to derive per-wire
encryption pads that are XORed together. Our attack becomes particularly devastating
when Free-XOR garbling [18] is used, as in this case we reconstruct the global offset
R = w̃0 ⊕ w̃1 which allows to decrypt the entire GC.

2. Our Attack

In this section, we show our attack on garbling schemes that use separate calls to a
deterministic encryption function to derive per-wire encryption pads that are XORed
together. Later in Sect. 3, we show a set of existing constructions and summarize which
ones are affected by our attack.

For a gate in the garbled circuit, let w̃� be the left input wire label, w̃r the right input
wire label, and w̃o the output wire label. The GC encryption function with per-wire
encryption pads is defined as

E(w̃�, w̃r ; w̃o) = w̃o ⊕ F(w̃�; T) ⊕ F(w̃r ; T), (1)

Breaking and Fixing Garbled Circuits Page 3 of 12 34

where F(k; T) is a Pseudo-Random Function (PRF) with key k and tweak T , often
instantiated based on AES.@ The tweak T is set such that it is unique per gate and invo-
cation of the GC encryption function (for the 4 possible input wire label combinations),
so it is often set to the gate number concatenated with the position in the garbled table.
However, the affected works omit to mention (and implement) that the tweak must also
be different for the left and right call of the PRF, presumably because they make the
implicit assumption that the two input wires are different, i.e., � �= r , which however is
never specified in the paper.

Our main observation is that when the tweak is the same for the left and right invocation
of the PRF and the input wire labels are the same (� = r), then the encryption pads cancel
out and leave both output wire labels unencrypted in the garbled table. Let w̃0 be the
wire label corresponding to plaintext bit 0 and w̃1 be the wire label corresponding to 1.
If the input wires for an AND gate are the same, then � = r and the garbled table looks
as follows (before the permutation of the entries):

E(w̃0
� , w̃

0
r ; w̃0

o) = w̃0
o ⊕ F(w̃0

r ; T00) ⊕ F(w̃0
r ; T00) = w̃0

o; (2)

E(w̃0
� , w̃

1
r ; w̃0

o) = w̃0
o ⊕ F(w̃0

r ; T01) ⊕ F(w̃1
r ; T01); (3)

E(w̃1
� , w̃

0
r ; w̃0

o) = w̃0
o ⊕ F(w̃1

r ; T10) ⊕ F(w̃0
r ; T10); (4)

E(w̃1
� , w̃

1
r ; w̃1

o) = w̃1
o ⊕ F(w̃1

r ; T11) ⊕ F(w̃1
r ; T11) = w̃1

o . (5)

Hence, the per-wire encryption pads cancel out for the first and last row of the truth
table and leak both output wire labels w̃0

o and w̃1
o . Note that the second and third garbled

table entries differ, because the tweaks T01 and T10 usually contain (or are explicitly
concatenated with) the position in the garbled table and hence are different.

2.1. Breaking GCs with Per-Wire Encryption Pads

The implications of our attack depend on the specific garbling scheme.
General Attack. When the input wires are equal (� = r), the random pads cancel

out and the garbled table of the AND gate contains both wire labels unencrypted: the
zero output wire label w̃0

o (see Eq. (2)) and the one output wire label w̃1
o (see Eq. (5)).

Hence, the GC evaluator obtains both output wire labels and can evaluate the remaining
circuit following the AND gate not only for the output wire label corresponding to the
current evaluation, but also for the other wire label. Depending on the circuit, this can
leak crucial information as described next.

In the general attack, the evaluator obtains from the garbled AND gate with duplicate
input wires four candidates for potential wire labels (taking each entry in the garbled
table), two of which are the valid wire labels. He already knows one valid wire label
from the evaluation of the GC, so the other wire label can be one of the remaining three
candidates. Assume that the subsequent circuit contains a “normal” AND gate (i.e., with
two different input wires), where w.l.o.g. the evaluator knows one valid wire label w̃∗

�

from the evaluation of the GC, and three candidate wire labels w̃1
� , w̃

2
� , w̃

3
� for the left

input. He evaluates the garbled gate on the valid wire label and obtains a valid output wire
label w̃∗

o . Now, he evaluates the garbled gate for each of the candidate wire labels w̃i
�,

 34 Page 4 of 12 R. Nieminen, T. Schneider

i ∈ {1, 2, 3}. If the corresponding output wire label is equal to w̃∗
o , then w̃i

� is a valid
input wire label, the plaintext output is 0 (because an AND gate evaluates to 0 in three
cases), and the right plaintext input is 0 (because the AND gate evaluated to 0 for left
inputs 0 and 1). Otherwise, if all output wire labels are different to w̃∗

o , then the right
plaintext input must be 1. Hence, the evaluator has successfully decrypted the plaintext
value of the right input wire.
3-Row Reduction [31]. The idea of garbled 3-Row Reduction [31] is to fix one of

the four entries in the table to 0κ which then no longer needs to be sent to the evaluator.
Here, we can apply the general attack described above by setting the omitted entry to 0κ ,
as we explain in the following.

For a garbled 3-Row Reduction AND gate with duplicate input wires (� = r), we have
two possible cases. In the first case, the first entry as in Eq. (2) (resp. the last entry as in
Eq. (5)) of the garbled table is fixed to 0κ , and therefore the actual wire label becomes all
zeros, namely w̃0

o = 0κ (resp. w̃1
o = 0κ). The other wire label is contained unencrypted

in the last garbled table entry as in Eq. (5) (resp. the first garbled table entry as in Eq.
(2)). In the second case, the second entry as in Eq. (3) (resp. third entry as in Eq. (4))
of the garbled table is fixed to 0κ . In this case, the first entry (as in Eq. (2)) and the last
entry (as in Eq. (5)) of the garbled table contain the unencrypted wire labels w̃0

o and w̃1
o .

In both cases, the evaluator now has four candidate wire labels: three taken from the
three garbled table entries and the fourth being the all zeros wire label 0κ . Exactly two
out of these four candidates are valid wire labels, which successfully decrypt the two
output wire labels corresponding to the gate’s plaintext inputs (0, vr) and (1, vr), exactly
as in the general attack.
Free-XOR [18]. The idea of Free-XOR garbling [18] is that all wire labels are cor-

related with a global offset R that is supposed to remain hidden from the evaluator,
i.e., R=w̃0

i ⊕ w̃1
i for all wires i . This allows to securely evaluate XOR gates by XORing

the corresponding wire labels, and therefore requires no communication for XOR gates.
When Free-XOR garbling is used, our attack becomes devastating, since the garbled
table of the AND gate where both input wires are the same (�=r) contains both w̃0

o
and w̃1

o , and the global offset R=w̃0 ⊕ w̃1 is leaked. Using this, the evaluator knows all
wire labels for all wires in the circuit and can evaluate it on arbitrary input combinations
from which substantial information about the other party’s inputs can be derived.

The attack works as follows: As for the general attack and the 3-Row Reduction [31]
described above, we obtain four candidate wire labels from an AND gate with duplicate
input wires. The evaluator already knows one valid wire label from the GC evaluation,
thus it can compute three candidate values for the global offset R, of which exactly one
is the correct one. The evaluator can now determine which of the candidate global offsets
is the correct one by evaluating any other AND gate (with two different input wires)
in the circuit for different combinations of input wire labels as follows: An AND gate
evalutes to 0 in three cases and to 1 in one case. Let R∗ be the candidate global offset
to check, and the evaluator knows the left input wire label w̃� and the right input wire
label w̃r . Now, he evaluates the AND gate for three combinations of input wire labels,
e.g., (w̃�, w̃r), (w̃� ⊕ R∗, w̃r), and (w̃�, w̃r ⊕ R∗). If at least two evaluations yield the
same output wire label (corresponding to plaintext value 0), then R∗ is the correct global
offset R.

Breaking and Fixing Garbled Circuits Page 5 of 12 34

2.2. AND Gates with Duplicate Input Wires

Our attack assumes an AND gate where both input wires are the same (� = r). As
AND(X, X) = X , this is a trivial identity gate which just outputs the input value. One
would assume that such a gate would not occur in practice. We give three examples
where such gates can occur naturally.
Circuits composed of NANDs only. In hardware synthesis, especially for ASICs, it

is common to represent the function as NAND gates only. Here, inverters are built as
NOT(X) = NAND(X, X). As our attack described in Sect. 2.1 for AND gates works
similarly for NAND gates, it immediately works for NAND-only functions that contain
at least one NOT gate.
Agreeing on the circuit to be evaluated. SFE protocols usually assume that both

parties “agree” on the circuit to be evaluated securely. When implementing this in prac-
tice, one party would suggest a circuit (or a high-level program from which the circuit is
compiled) and the other party would agree to jointly evaluate it, e.g., after having tested
its correctness for some inputs or inspecting the high-level program. If the party who
suggests which circuit to evaluate is the one that evaluates the GC, it could suggest a cir-
cuit where one gate has duplicate input wires and then apply our attack. Overall, it is not
enough for the other party to test that the circuit computes the intended function correctly.
Garbling with a hardware token [16]. The main bottleneck in protocols using GC is

sending the garbled circuit which has size linear in the number of AND gates in the circuit.
To circumvent this, the server can send to the client a hardware token (e.g., a smartcard)
that generates the GC on his behalf as proposed in [16]. If the token has constant memory
(independent of the size of the circuit), the client can send a description of the circuit
gate-by-gate to the token. The token locally derives the wire labels corresponding to the
gate’s wire indices, generates the garbled table, and sends it to the client. Note that this
does not work with garbling schemes such as 3-Row Reduction [31], HalfGates [41], or
Three-Halves Garbling [36], where the output wire label is a function of the input wire
labels. The protocol adds additional measures that at the end of the protocol allow the
server to verify that the client has given the “right” circuit to the token before the outputs
of the function can be decrypted (for this the token locally stores a hash of the circuit
description seen). Our attack can be applied to this token-based protocol as now the
client can simply give an AND gate with duplicate input wires and immediately decrypt
intermediate wires, hence circumventing the output decryption mechanism.

3. Affected Garbling Schemes

In this section, we list several prominent garbling schemes and denote if they are affected
by our attack presented in Sect. 2. For clarity, we are presenting the encryption function
constructions along the schemes using the notation from Sect. 2.
Two Parties. We summarize the garbling schemes in Table 1, where the permutation

bit (for Point-and-Permute, see [2]) of a wire label w̃ is denoted as p(w̃) and k is a fixed
(and public) symmetric key. As can be seen from Table 1, the encryption function of
several garbling schemes for the two-party setting are vulnerable to our attack [13,25,
28,31,33].

Interestingly, [4] explicitly states the requirement on circuits that gates must have
different input wires (� < r), so their construction Garble1 with a Dual-Key Cipher

 34 Page 6 of 12 R. Nieminen, T. Schneider

Table 1. Encryption functions in different garbled circuit constructions and whether the scheme is vulnerable
to our attack .

T : tweak, F : pseudo-random function, H : cryptographic hash function modeled as random oracle

(DKC) instantiated from a PRF is not affected by our attack. In fact, [4] mentions in
footnote 9 of their full version that [31] “cannot handle a wire being used twice as an
input to another gate”, which might refer to the weakness discovered in our work. This
construction is used in the formally verified secure two-party implementation of [1],
where the EasyCrypt code contains the restriction that input wires are different (� < r),
but this is not mentioned in the paper [1].

We note that the most recent garbling schemes [36,41] are not vulnerable to our
attack as they go beyond encrypting single table entries. However, these schemes rely
on a non-standard circularity assumption [9], whereas today’s best garbling scheme
under standard assumptions [13] is affected by our attack.
Multiple Parties. In addition to the schemes in Table 1, Ben-Efraim et al. [6] described

an encryption function for multi-party garbling based on the approach of Beaver-Micali-
Rogaway (BMR) [2] using a double-key pseudo-random function as F2(w̃�, w̃r ; T ‖ j),
where j is the index of the party. Implementations of this can also be vulnerable to
our attack, e.g., if F2(w̃�, w̃r ; T ‖ j) = F(w̃�; T ‖ j) ⊕ F(w̃r ; T ‖ j) and the full
construction for N parties is

N
⊕

i=1

(F(w̃�; T ‖ j) ⊕ F(w̃r ; T ‖ j)) ⊕ w̃o .

A similar construction was presented in [7] before the authors described a different
construction using a key-homomorphic PRF. Later in their paper the authors wanted to
“ensure that the same PRF is not queried twice with the same input” (see Definition

Breaking and Fixing Garbled Circuits Page 7 of 12 34

Table 2. MPC frameworks, their encryption function construction, and whether the framework is vulnerable
to our attack .

7 in [7]). However, as in the two-party garbling schemes, the technical details are not
explicitly presented and the encryption function remains vulnerable.

The focus in these works seems to be always on the case where two (or more) gates
share a common input wire, hence the encryption functions are designed to include some
gate identifier, i.e., the tweak T . We emphasize that this is not enough, since the same
gate can also have duplicate input wires.

4. Affected MPC Frameworks

In this section, we list several MPC frameworks and denote if they are vulnerable to our
attack presented in Sect. 2. We summarize the frameworks in Table 2 alongside with the
used encryption function construction (cf. Sect. 3), and if the framework is vulnerable.

Fairplay [28] uses an affected encryption function (see Table 1) and is vulnerable to
our attack. We note that their compiler replaces AND gates with duplicate input wires
with identity gates (similarly, the Frigate compiler [29] replaces them with a wire), so
such gates are not generated automatically. However, one can input a circuit containing
an AND gate with duplicate input wires into Fairplay’s GC evaluation engine making
our attack work (see Appendix A for details).

The most recent MPC frameworks such as TASTY [14], FastGC [15], VMCrypt [27],
ABY [10], TinyGarble [38], Obliv-C [40], and ObliVM [26] implement a more recent
encryption function for garbling and are not vulnerable to our attack.

5. Fixing Garbled Circuit with Per-Wire Encryption Pads

In this section, we give two countermeasures against our attack on Garbled Circuits
(GCs) with per-wire encryption pads and AND gates with duplicate input wires.

1. The first countermeasure is to implement a simple validity check to make sure that
the two input wires are indeed distinct, i.e., � �= r .

2. The second countermeasure is to modify the encryption function such that the
two PRFs are called on differing values even when both inputs are the same.

 34 Page 8 of 12 R. Nieminen, T. Schneider

Modern garbling schemes such as fixed-key AES garbling [3] already provide this
inherently. Otherwise, we can simply append a 0 to the left PRF call and a 1 to the
right PRF call. More specifically, we modify Eq. (1) into the following:

E(w̃�, w̃r ; w̃o) = w̃o ⊕ F(w̃�; T ‖ 0) ⊕ F(w̃r ; T ‖ 1) . (6)

So far, including the gate index in the tweak T ensured that PRF calls are unique
when the same wire is used as input to multiple AND gates. Moreover, including
the permutation bits (resp. position in the garbled table) ensured that the PRF calls
are unique for the four garbled table entries as the input wire labels are used to
encrypt multiple garbled table entries. By additionally including the left/right bit
as in Eq. (6), we ensure that also within one garbled table entry the PRF calls are
unique for the left and right input wire, even if this is the same wire.

Since most MPC frameworks decouple the task of compiling the function to be evaluated
into a Boolean circuit from the secure evaluation of the Boolean circuit, we recommend
to apply both countermeasures: The circuit compiler should check for all gates that the
two input wires are always distinct, independent of the selection of the underlying en-
cryption function (which could be even unknown at the compilation stage). Additionally,
the implementation of the GC generation and evaluation engine should ensure that the
protocol is secure even if a gate has duplicate input wires, e.g., by using the unaffected
encryption functions from Table 1, or by applying the first or second countermeasure
for the vulnerable schemes.

6. Related Work

Our work fits into a series of works that describe subtle issues in the area of garbling
schemes, including their usage in higher-level protocols, proving their security, and their
implementation.

In [3, §3 “An Insecurity in Prior Works” and Fig. 3], Bellare et al. present a very related
attack on garbling schemes with two independent PRF calls. They show that when using
Free-XOR [18], a circuit can be built s.t. the input wire labels of the two (different) input
wires to an AND gate are the same, and then the per-wire encryption pads cancel out
resulting in a break of privacy. This is exactly the same observation as ours, but more
general as it even works for circuits where no gate has duplicate input wires. In our
paper, we focus on the related issue when an AND gate has duplicate input wires which
also applies to garbling schemes without using Free-XOR, show that privacy breaks for
a large class of circuits, and survey the affected garbling schemes and implementations.

Kiraz and Schoenmakers [17] describe an attack on Garbled Circuit (GC)-based pro-
tocols with stronger security using the Cut-and-Choose technique as it was performed in
the initial work of Pinkas [32] and the implementation in Fairplay [28]. In these proto-
cols, multiple GCs are generated of which some are opened and checked for correctness.
The problem discovered by Kiraz and Schoenmakers stems from the way OTs are used
with which the evaluator obliviously obtains the wire labels corresponding to his inputs.
They show that classical OT is not enough and propose to use committing OT instead.

Breaking and Fixing Garbled Circuits Page 9 of 12 34

The issues pointed out were resolved in subsequent Cut-and-Choose-based protocols
such as [22,24,25,33].

Choi et al. [9] show that not only a variant of correlation robustness (as claimed in [18]),
but also a form of circular security is required to prove security of the Free-XOR tech-
nique [18] using a weaker assumption than a random oracle.

Levi and Hazay [21] give side-channel attacks on implementations of GCs where all
wire labels are correlated due to the Free-XOR technique [18].

7. Conclusion

In this work, we presented an attack against garbling schemes that use deterministic
encryption functions to derive per-wire encryption pads for the left and right input wire
that are XORed together. The attack stems from the implicit, but oftentimes not explicitly
mentioned assumption that the input wires to an AND gates must be different. We showed
that our attack affects several prominent garbling schemes and can occur in practical
systems. We also showed how to easily and efficiently fix the vulnerable constructions
to prevent our attack.

In the future, we hope that our findings help to decouple or at least make explicit the
required properties about the circuit (or more general the function to be computed) which
is the interface between compilation and the underlying secure computation protocols.
This is important not only in papers with cryptographic constructions and proofs, but
especially in implementation frameworks and in languages and compilers that aim at
formally verified secure computation, e.g., [1,34,35].

Acknowledgements

We thank Claudio Orlandi for pointing us to the related attack and observations in [3, §3],
cf. 6. This project received funding from the European Research Council (ERC) under
the European Union’s Horizon 2020 research and innovation program (grant agreement
No. 850990 PSOTI). It was co-funded by the Deutsche Forschungsgemeinschaft (DFG)
within SFB 1119 CROSSING/236615297 and GRK 2050 Privacy & Trust/251805230.

Funding Open Access funding enabled and organized by Projekt DEAL.

OpenAccess This article is licensed under a Creative Commons Attribution 4.0 International License, which
permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence,
and indicate if changes were made. The images or other third party material in this article are included in the
article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is
not included in the article’s Creative Commons licence and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder.
To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

http://creativecommons.org/licenses/by/4.0/

 34 Page 10 of 12 R. Nieminen, T. Schneider

A Our Attack on Fairplay

In this section, we show hot to apply our attack on the Fairplay MPC framework [28]. We start with the original
circuit in Fig. 1a, where Alice is the attacker with two input wires and Bob has one input wire.
First, Alice turns the original circuit into the modified circuit shown in Fig. 1b, where the first input of Alice
goes into both inputs of the first AND gate. Note that both circuits compute the same function. Since the
compiler of Fairplay either removes or replaces the first AND gate with an identity gate, Alice must manually
modify the circuit description in Fairplay’s Secure Hardware Definition Language (SHDL). The corresponding
file Opt.circuit is given in List. 1.
The idea is that now the evaluator Alice gets both input wire labels for the final AND gate and can perform
our General Attack as explained in Sect. 2.1 from which she can determine the output value of the XOR gate.
This value reveals the input value of Bob, since Alice knows the other input value for the XOR circuit (and
the output value from the attack). In this example also the output value is revealed, since Alice now knows
both input values for the final AND gate.
A similar attack can be applied to more complex circuits in order to reveal Bob’s input values.

Listing 1. Modified circuit for our attack (see Fig. 1(b)) in Fairplay’s Secure Hardware Definition Language
(SHDL).

0 input / / output$input .bob$0
1 input / / output$input . alice [1]$0
2 input / / output$input . alice [0]$0
3 gate arity 2 table [0 0 0 1] inputs [2 2] / / duplicate input wires
4 gate arity 2 table [0 1 1 0] inputs [0 1]
5 output gate arity 2 table [0 0 0 1] inputs [4 3] / / output$output .bob$0

input.alice[0] input.alice[1] input.bob

output.bob

(a) Original circuit

input.alice[0] input.alice[1] input.bob

output.bob

(b) Modified circuit for our attack

Fig. 1. Example circuit .

Breaking and Fixing Garbled Circuits Page 11 of 12 34

References

[1] J.B. Almeida, M. Barbosa, G. Barthe, F. Dupressoir, B. Grégoire, V. Laporte, V. Pereira, A fast and
verified software stack for secure function evaluation, in CCS (2017)

[2] D. Beaver, S. Micali, P. Rogaway, The round complexity of secure protocols, in STOC (1990)
[3] M. Bellare, V.T. Hoang, S. Keelveedhi, P. Rogaway, Efficient garbling from a fixed-key blockcipher, in

S&P (2013)
[4] M. Bellare, V.T. Hoang, P. Rogaway, Foundations of garbled circuits, inCCS (2012). Full version: https://

ia.cr/2012/265
[5] A. Ben-David, N. Nisan, B. Pinkas, FairplayMP: A system for secure multi-party computation, in CCS

(2008)
[6] A. Ben-Efraim, Y. Lindell, E. Omri, Optimizing semi-honest secure multiparty computation for the

Internet, in CCS (2016)
[7] A. Ben-Efraim, Y. Lindell, E. Omri, Efficient scalable constant-round MPC via garbled circuits, in

ASIACRYPT (2017)
[8] N. Büscher, D. Demmler, S. Katzenbeisser, D. Kretzmer, T. Schneider, HyCC: Compilation of hybrid

protocols for practical secure computation, in CCS (2018)
[9] S.G. Choi, J. Katz, R. Kumaresan, H.-S. Zhou, On the security of the “Free-XOR” technique, in TCC

(2012)
[10] D. Demmler, T. Schneider, M. Zohner, ABY—A framework for efficient mixed-protocol secure two-party

computation, in NDSS (2015)
[11] M. Franz, A. Holzer, S. Katzenbeisser, C. Schallhart, H. Veith, CBMC-GC: An ANSI C compiler for

secure two-party computations, in Compiler Construction (CC) (2014)
[12] O. Goldreich, S. Micali, A. Wigderson, How to play ANY mental game, in STOC (1987)
[13] S. Gueron, Y. Lindell, A. Nof, B. Pinkas, Fast garbling of circuits under standard assumptions, in CCS

(2015)
[14] W. Henecka, S. Kögl, A. Sadeghi, T. Schneider, I. Wehrenberg, TASTY: Tool for automating secure

two-party computations, in CCS (2010)
[15] Y. Huang, D. Evans, J. Katz, L. Malka, Faster secure two-party computation using garbled circuits, in

USENIX Security (2011)
[16] K. Järvinen, V. Kolesnikov, A. Sadeghi, T. Schneider, Embedded SFE: Offloading server and network

using hardware tokens, in FC (2010)
[17] M. Kiraz, B. Schoenmakers, A protocol issue for the malicious case of Yao’s garbled circuit construction,

in Information Theory in the Benelux (SITB) (2006)
[18] V. Kolesnikov, T. Schneider, Improved garbled circuit: Free XOR gates and applications, in ICALP

(2008)
[19] B. Kreuter, A. Shelat, B. Mood, K. Butler, PCF: A portable circuit format for scalable two-party secure

computation, in USENIX Security (2013)
[20] B. Kreuter, A. Shelat, C. Shen, Billion-gate secure computation with malicious adversaries, in USENIX

Security (2012)
[21] I. Levi, C. Hazay, Garbled circuits from an SCA perspective: Free XOR can be quite expensive..., in

CHES (2023)
[22] Y. Lindell, B. Pinkas, An efficient protocol for secure two-party computation in the presence of malicious

adversaries, in EUROCRYPT (2007)
[23] Y. Lindell, B. Pinkas, A proof of security of Yao’s protocol for two-party computation. J. Cryptol. (2009)
[24] Y. Lindell, B. Pinkas, Secure two-party computation via cut-and-choose oblivious transfer. J. Cryptol.

(2012)
[25] Y. Lindell, B. Pinkas, N.P. Smart, Implementing two-party computation efficiently with security against

malicious adversaries, in SCN (2008)
[26] C. Liu, X.S. Wang, K. Nayak, Y. Huang, E. Shi, ObliVM: A programming framework for secure com-

putation, in S&P (2015)
[27] L. Malka, VMCrypt: Modular software architecture for scalable secure computation, in CCS (2011)
[28] D. Malkhi, N. Nisan, B. Pinkas, Y. Sella, Fairplay—Secure two-party computation system, in USENIX

Security (2004)

https://ia.cr/2012/265
https://ia.cr/2012/265

 34 Page 12 of 12 R. Nieminen, T. Schneider

[29] B. Mood, D. Gupta, H. Carter, K. Butler, P. Traynor, Frigate: A validated, extensible, and efficient
compiler and interpreter for secure computation, in EuroS&P (2016)

[30] B. Mood, L. Letaw, K. Butler, Memory-efficient garbled circuit generation for mobile devices, in FC
(2012)

[31] M. Naor, B. Pinkas, R. Sumner, Privacy preserving auctions and mechanism design, in Electronic Com-
merce (EC) (1999)

[32] B. Pinkas, Fair secure two-party computation, in EUROCRYPT (2003)
[33] B. Pinkas, T. Schneider, N.P. Smart, S.C. Williams, Secure two-party computation is practical, in ASI-

ACRYPT (2009)
[34] A. Rastogi, M.A. Hammer, M. Hicks, Wysteria: A programming language for generic, mixed-mode

multiparty computations, in S&P (2014)
[35] A. Rastogi, N. Swamy, M. Hicks, Wys*: A DSL for verified secure multi-party computations, in Prin-

ciples of Security and Trust (POST) (2019)
[36] M. Rosulek, L. Roy, Three halves make a whole? Beating the half–gates lower bound for garbled circuits,

in CRYPTO (2021)
[37] T. Schneider, M. Zoher, GMW vs. Yao? Efficient secure two-party computation with low depth circuits,

in FC (2013)
[38] E.M. Songhori, S.U. Hussain, A. Sadeghi, T. Schneider, F. Koushanfar, TinyGarble: Highly compressed

and scalable sequential garbled circuits, in S&P (2015)
[39] A.C. Yao, How to generate and exchange secrets, in FOCS (1986)
[40] S. Zahur, D. Evans, Obliv-C: A language for extensible data-oblivious computation. Cryptology ePrint

Archive 1153 (2015)
[41] S. Zahur, M. Rosulek, D. Evans, Two halves make a whole—Reducing data transfer in garbled circuits

using half gates, in EUROCRYPT (2015)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

	Breaking and Fixing Garbled Circuits When a Gate has Duplicate Input Wires
	1. Introduction
	2. Our Attack
	2.1. Breaking GCs with Per-Wire Encryption Pads
	2.2. AND Gates with Duplicate Input Wires

	3. Affected Garbling Schemes
	4. Affected MPC Frameworks
	5. Fixing Garbled Circuit with Per-Wire Encryption Pads
	6. Related Work
	7. Conclusion
	Acknowledgements
	References

