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ABSTRACT
Cache side-channels are a major threat to cryptographic implemen-
tations, particularly block ciphers. Traditional manual hardening
methods transform block ciphers into Boolean circuits, a practice re-
fined since the late 90s. The only existing automatic approach based
on Boolean circuits achieves security but suffers from performance
issues. This paper examines the use of Lookup Tables (LUTs) for
automatic hardening of block ciphers against cache side-channel
attacks. We present a novel method combining LUT-based synthesis
with quantitative static analysis in our HyCaMi framework. Applied
to seven block cipher implementations, HyCaMi shows significant
improvement in efficiency, being 9.5× more efficient than previous
methods, while effectively protecting against cache side-channel
attacks. Additionally, for the first time, we explore balancing speed
with security by adjusting LUT sizes, providing faster performance
with slightly reduced leakage guarantees, suitable for scenarios
where absolute security and speed must be balanced.
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1 INTRODUCTION
Cache side-channels are unintended flows of information across
system layers. In a cache side-channel attack, an adversary obtains
information on secret inputs by observing the minute timing dif-
ferences caused by cache hits and misses triggered by runs of the
target program. Despite well-known countermeasures, prevalent
cryptographic libraries likeOpenSSL,mbedTLS, andNettle often rely
on implementations of AES-256 that are susceptible to such attacks,
especially in the absence of specialized hardware like AES-NI.

In response to these vulnerabilities, developers have historically
employed constant-time programmingmethods tomanually harden
cryptographic implementations. This approach is evident in the cre-
ation of bitsliced versions of DES [5] and AES-GCM [17], which are
acknowledged for both their resistance to side-channel attacks and
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high performance. These secure versions are crafted using hand-
designed Boolean circuits that inherently possess constant-time
properties. However, this manual process is not foolproof and is
susceptible to introducing new vulnerabilities, either through hu-
man error or unforeseen compiler optimizations. For instance, [9]
has identified leaks in constant-time code running in production.

The pursuit of automatic side-channel hardening tools has be-
come a focal point in recent research. Projects like Raccoon [25], SC-
Eliminator [31], and Constantine [6] represent significant strides in
this direction, as outlined in our literature review (see Table 1). How-
ever, while these tools make compelling cases for their effectiveness
in enhancing side-channel security, they often lack comprehensive
static verification of the security properties in the resulting binaries.
In contrast RiCaSi [21] is more closely aligned with our work, as
it utilizes a methodology similar to the initial manual hardening
approach. It automatically generates Boolean circuits from C im-
plementations, akin to the early manual methods, then translates
them back to C and compiles to x86. This process allows for static
analysis verification, ensuring that the resulting binaries are free
from cache side-channels. However, a critical limitation of RiCaSi is
the significant performance degradation it introduces, as the bina-
ries generated are considerably slower compared to their original
versions, highlighting a trade-off between security and efficiency.

Our research addresses this performance-security trade-off by
adopting a shift similar to that seen in Multi-Party Computation
(MPC): from Boolean circuits to Lookup Tables (LUTs). LUTs have
been recognized as essential components in various computational
areas, including cryptography and secure computation, especially
in MPC, where LUT-based techniques have overwhelmingly been
preferred over traditional Boolean circuit evaluations [7, 10]. Our
work aims to provide an automatic side-channel hardening solution
that not only retains relative speed but also offers robust, statically
verifiable security guarantees through the use of LUTs.

1.1 Related Work
This section provides a concise overview of related works.
Vulnerabilities in Block Cipher Implementations: Despite be-
ing a known risk for cache side-channel vulnerabilities, popular
block cipher implementations like AES-256 from OpenSSL [13] and
DES, 3DES, and Camellia from mbedTLS [19] continue to use large
lookup tables for computational efficiency. These are the default
choices in the absence of hardware acceleration. Examples for types
of cache side-channel attacks include measuring runtime [3], learn-
ing which cache lines have been evicted by the target program [14],
abusing access latency to shared memory buffers [32] and ana-
lyzing cache hits and misses from power traces [4]. Traditional
mitigation involves constant-time programming techniques, such
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Obfuscation
Technique

Automatic
Hardening

Verified
Leakage

No Hardware
Extension

Partial
HardeningTool / Implementation

Bitsliced DES (FSE’97) bitslicing ✗ ✗ ✓ ✗

Bitsliced AES-GCM (CHES’09) bitslicing ✗ ✗ ✗ (Intel SSE) ✗

Racoon (USENIX’15) transactional + ORAM ✓ ✗∗ ✗ (AVX) ✗

SC-Eliminator (ISSTA’18) transformation + pre-loading ✓ ✗∗ ✓ ✗

RiCaSi (CANS’20) circuit compilation ✓ ✓ ✓ ✗

Constantine (CCS’21) linerization ✓ ✗∗ ✗ (AVX) ✗

HyCaMi Secure LUTs ✓ ✓ ✓ ✓

Table 1: Comparison to other Hardening Approaches (*performance optimizations prevent verification of hardened program)

as bitslicing [5] which involves manually translating a block cipher
specification to a circuit representation of logical bit operations.
This manual approach has later been optimized for throughput
using SIMD instructions for parallelism [17].
Static Cache Side-Channel Assessment: Qualitative tools like
CacheS [28] and CaType [16] focus on the detection and localization
of side-channel vulnerabilities. In this work we build on the family
of tools CacheAudit, a quantitative approach that provides infor-
mation theoretic upper bounds on the cache side-channel leakage
of x86 binaries. The approach and initial implementation was pub-
lished in [12] and later extended by the original authors [11] and
authors of this paper [21, 22, 29]. Other quantitative tools include
works on timing-attackers without cache on the level of C [15] and
Java [20].
LUT-Based Circuits in Secure Multiparty Computation: In
Secure Multiparty Computation (MPC), LUT-based protocols like
FLUTE [7] and LUC [10] have enhanced efficiency by reducing cryp-
tographic operations and circuit complexity. The tools for creating
LUT-based circuits primarily originate from hardware synthesis tar-
geting FPGAs. Yosys [30], an open-source framework, maps Verilog
designs into circuits for various hardware targets, and has been em-
ployed in an MPC context [24]. To bridge the gap for programmers
accustomed to imperative languages, high-level synthesis tools like
XLS [1] from Google have been developed, which compile C/C++
code into Verilog, thus facilitating the design of MPC circuits in
familiar programming languages.
Thiswork: Following the exploration of LUTs inMPC as previously
discussed, we now focus on the following question:

Are programs automatically hardened using LUTs more
efficient in performance compared to those automati-
cally hardened with Boolean circuits, while retaining
the same cache side-channel security?

To address this question, we introduce HyCaMi, an innovative
approach that merges LUT synthesis with quantitative side-channel
analysis. We proceed by elaborating on our exact contributions.

1.2 Our Contributions
In this work, we pivot the traditional understanding of LUTs in
the realm of cybersecurity, transitioning from their conventional
role as a vulnerability in side-channel attacks against block ciphers
to a robust defensive mechanism. This novel application necessi-
tates the development of new, optimized LUT-based circuit repre-
sentations. Acknowledging the complexity and error-proneness
of manual construction, we introduce an innovative automated
toolchain. This toolchain adeptly transforms high-level function

descriptions into efficient multi-input, multi-output LUT represen-
tations, leveraging repurposed hardware synthesis tools beyond
their original purposes. Our approach, while producing binaries
that may be slower compared to existing methods like Raccoon [25],
SC-Eliminator [31], and Constantine [6], achieves superior security
guarantees via static analysis of the hardened binaries. Compared
to RiCaSi [21], the only other tool with comparable security prop-
erties on the binary, we achieve a speed that is up to 9.6× faster.
Our main technical contributions are summarized as follows:
– Encoding LUT-Based Circuits into C:We introduce a cutting-
edge method for encoding LUT-based circuits into C. This method
strategically balances security and performance, offering either
complete security against cache side-channels or significantly min-
imizing cache side-channel leakage, depending on the LUTs’ size.
– Development of HyCaMi Framework: We develop HyCaMi,
a comprehensive framework for the automatic hardening of block
ciphers. HyCaMi synergizes LUT-based high-level synthesis with
quantitative static side-channel analysis, culminating in a pipeline
that automates the hardening of C/C++ source code. Our framework
is open-sourced at https://encrypto.de/code/HyCaMi.
– Extensive Evaluation Across Multiple Implementations
Our framework’s efficacy is rigorously tested across four AES-256
implementations from OpenSSL,mbedTLS, Nettle, and LibTomCrypt,
and implementations of DES, 3DES, and Camellia from mbedTLS.
We demonstrate that HyCaMi produces binaries that are free of
cache side channels and which are up to 9.6× faster than the hard-
ened binaries of state-of-the-art work [21].
– Exploring Security-Runtime Trade-Offs:We explore, for the
first time, the security-runtime trade-off induced by increasing size
of LUTs. Applied to the same block ciphers, we show that in this
configuration the binaries are up to 4.5× faster when compared
to the fully secure variants, while for access-based attackers only
having at most 18% of the leakage bound of the original program.

2 PRELIMINARIES
In this section we give a quick overview on the automatic quantifi-
cation of cache side channels using program analysis. We calculate
an upper bound of the capacity of a discrete memory-less channel
𝐶 : 𝐼 →𝑂 , where 𝐼 is a finite set of secret inputs, 𝑂 is a finite set
of side-channel outputs and 𝐶 models the behavior of the target
program. Leakage is defined as the difficulty of guessing the secret
input given the side-channel output. In other words, leakage is
the difference in uncertainty of the attacker over the secret input
before and after seeing the side-channel output. If this difference in
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uncertainty is given in terms of min-entropy (called min-entropy
leakage), this value provides a measure on the reduction of guesses
for a one-shot attacker in bits [26]. As also noted in [26], an upper
bound of the min-entropy leakage can be calculated by counting the
number of possible side-channel observations (i.e. elements of 𝑂).
The family of tools CacheAudit, applies this approach to cache side
channels on the x86 architecture. The tool overapproximates the set
𝑂 by applying abstract interpretation [8] with an abstract model of
the x86 architecture with cache. We categorize four distinct models
of cache-side-channel adversaries, identified as acc, accd, trace, and
time. They are:
- 𝑂acc: The set of all cache states after termination of the victim
program. In this model the attacker can deduce which memory
blocks of the victim program are cached in a shared cache.
- 𝑂accd: The set of all cache states after termination of the victim
program. This attacker is similar to acc, but can only deduce how
many memory blocks the victim program has loaded in each cache
set of a shared cache.
- 𝑂 trace ⊆ {ℎ𝑖𝑡,𝑚𝑖𝑠𝑠, 𝑛𝑜𝑛𝑒}∗: The set of sequences (traces) of cache
interactions. These include all instances of cache hits, misses, and
cases of ’no access’. Such traces offer a detailed view of the cache
behavior throughout a program’s execution.
- 𝑂 time ⊆ N: The set of possible running times as influenced by the
caching behavior. These times are are calculated for a fixed duration
for cache hits, misses, and non-memory accessing instructions.

These adversary models have been previously implemented for
the CacheAudit family of tools. This pre-existing implementation
allows us to integrate these models into our framework seamlessly,
without necessitating any modifications to the existing code.

3 SECURE LUTS IN C
Whether a LUT with secret-depended accesses is a potential cache-
side-channel vulnerability or not depends on the size of the LUT,
how it is positioned in memory and how it is accessed by the pro-
gram. In this section we present a novel technique for placing and
accessing LUTs that is either fully side-channel secure, or mini-
mizes leakage. The technique works for multi-input multi-output
LUTs with at most 8 inputs and outputs. For this section we as-
sume a target cache with 32 KiB size and a line size of 64 byte, the
specification for a typical L1 data cache of Intel 8th Gen or AMD
Zen 3 desktop chips. Only minor changes are required to adapt this
technique to other caches of differrent size.

We distinguish two cases. If all LUTs have at most 6 inputs, we
align them to 64 byte boundaries (i.e. the size of one cache line).
If any LUT can have more than 6 inputs, we take two precautions
to minimize leakage. First we place all LUTs at 32KiB boundaries
(i.e. the size of the cache). Second, we rearrange the values in each
table such that every access refers to the same cache set. For the
cache described above, we place every value within 64 byte blocks
that are located 4KiB apart (i.e. the number of cache sets multiplied
by the cache line size). Listing 1 shows the source code used for an
example 8-input 6-output LUT that was hardened.

Following this method, if all LUTs have 6 inputs or less, the
hardened binary is fully secure against cache side-channels by
design. This is because every table takes 26 · 8 bits = 64 bytes in
memory and thus fits into one cache line. Hence, even if the access

Block cipher Description (in C)

Side-Channel Analysis [12]

leakage ≤
threshold

no

yes

Hardening with
SecLUT-6

Hardening with
SecLUT-8

Side-Channel
Analysis [12]

Side-Channel
Analysis [12]

leakage ≤
threshold

hardened binary
free of cache side-
channel leakage

leakage guaran-
tees on the origi-
nal binary

(semi-) hardened
binary with leak-
age guarantees

Warningyes
no

Figure 1: Workflow of HyCaMi
location to the LUT is secret-dependent, no leakage occurs. LUTs
with more than 6 inputs do not fit into one cache line. To minimize
leakage we place them such that every access goes to the same cache
set. For example, without hardening, a LUT with 8 inputs takes 28 ·
8 bits = 256 bytes of memory and thus span four cache lines. After
the hardening step, each 64 byte block is placed 4KiB apart such that
all four cache lines fall into the same cache set. The result is that
all LUT accesses are cached in the same cache set. Thus, if enough
different LUTs are accessed (e.g. 8 for the LRU replacement strategy)
the cache lines of prior LUT accesses are evicted, thereby hiding
information from a cache side-channel attacker. For an access-based
attacker without shared memory (i.e. attackers modeled by accd),
this limits the amount of possible different observable states to 9,
or at most 𝑙𝑜𝑔2 (9) ≈ 3.17 bits of leakage. We can not make such
predictions for the other three attacker models.

Listing 1: Excerpt of generated C-code accessing tables for SecLUT-8.

static const uint8_t table_3 [] __attribute__ (( aligned
(32768))) = {0b00111111 , ...};

...
uint32_t addr_3 = wire_0 | wire_2 <<1 | wire_1 <<2 | wire_3

<<3 | wire_5 <<4 | wire_7 <<5 | wire_6 <<6 | wire_4 <<7;
addr_3 = (( addr_3 >> 6) * 4096) + (addr_3 % 64);
uint8_t tmp_3 = table_3[addr_3 ];
uint32_t wire_24 = tmp_3 & 0b1;
uint32_t wire_25 = (tmp_3 & 0b10) > 0;
uint32_t wire_26 = (tmp_3 & 0b100) > 0;
uint32_t wire_27 = (tmp_3 & 0b1000) > 0;
uint32_t wire_28 = (tmp_3 & 0b10000) > 0;
uint32_t wire_29 = (tmp_3 & 0b100000) > 0;

4 THE 𝐻𝑦𝐶𝑎𝑀𝑖 FRAMEWORK
The general workflow of HyCaMi is depicted in Figure 1. Given
a C implementation of a block cipher that is possibly vulnerable
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to cache side-channel attacks, the source code is compiled to x86
machine code and statically analyzed with CacheAudit v0.3 [12,
21]. If the leakage bound is acceptable, no hardening is required
and the framework simply supplies these leakage guarantees on
the binary. If, however, the leakage bound is too high, there are
two paths. In both paths, the C source code is translated into an
equivalent function following our synthesis flow. For the default
case, LUTs with at most 6 inputs are chosen, which results in a fully
secure program (cf. Section 3). We call this configuration SecLUT-6.
Alternatively, the synthesis flow is applied using LUTs with at most
8 inputs. This results in a program that is potentially leaky with
likely faster run times. We call this configuration SecLUT-8.

Both binaries are analyzed with CacheAudit. For the fully hard-
ened version, this step statically verifies that the compiler did not
introduce new unexpected leakage. In the default case, this verifica-
tion passes. For the SecLUT-8 version, this step attests whether the
binary may be suited for the chosen scenario. If not, the framework
still supplies this leaky variant together with a warning.
Synthesis: On a high level,𝐻𝑦𝐶𝑎𝑀𝑖 translates a C implementation
of a function into an equivalent C implementation based on secure
LUT access by using open-source frameworks integrated into a
custom compilation workflow. An overview of all processing steps
is given in Figure 2. First, the function is manually extracted from
the source C file. Depending on the implementation of the func-
tion, it may be necessary to modify the source code manually and
replace C/C++ constructs not supported by XLS [1]. The functions
studied in this paper required the conversion of unbounded while
loops containing break statements to bounded for loops. Addi-
tionally, the implementations use pointer arithmetic which were
replaced with array indexing operators. Given an implementation in
C/C++ containing only supported constructs, XLS [1] translates the
C/C++ code into an intermediate representation (IR) of a Boolean
circuit along with additional metadata. This metadata describes the
translation of the function signature in C to the circuit inputs and
outputs in the IR. After applying optimizations, XLS translates the
IR into Verilog code. The Verilog code generator is configured to
output combinational Verilog circuits instead of pipelined circuits.
Pipelined circuits achieve higher throughput by exploiting paral-
lelism in hardware designs. The evaluation of the resulting LUT
circuit happens in a single thread in software, thus the benefits of
pipelining do not apply.

We use Yosys [30] to synthesize the Verilog code into Boolean
circuits containing multi-input, single-output LUTs. This circuit
containing multi-input, multi-output LUTs is translated into C code
using our novel LUT2C converter. The LUT2C translator requires
information on the cache architecture of the target processor in
order to layout the lookup table bitstring in a way which minimizes
the information revealed in side-channels about the table index
accessed. The resulting C source code is divided into three parts:
The unwrapping of function parameters into individual wire values,
the calculation of the results, and the wrapping of wire values back
into C types. The unwrapping andwrapping code is generated using
the metadata provided by XLS in the first step of the compilation
pipeline. This makes it possible for the generated function to have
the same function signature as the original implementation.

The calculation of the result consists of a series of operations
for each LUT gate. First, the index into the lookup table data is

calculated by concatenating the input wire value bits. The data in
the corresponding index is then read from a byte array. Depending
on the number of outputs, the bits contained in the byte are assigned
to multiple wires. We describe the access in detail in Section 3. The
generated code can then be compiled into a binary object file and
linked with the original code with a C/C++ compiler.

5 PERFORMANCE EVALUATION
We evaluate the effectiveness of hardening and the overhead in-
curred by HyCaMi at the example of seven block cipher software
implementations. First, we apply HyCaMi to DES, 3DES and Camel-
lia from mbedTLS 2.16.5 [19]. All three implementations use LUTs
to speed up computation. Such LUT-based implementations of DES,
and Camellia are known to be vulnerable to cache side-channel
attacks [27]. Second, we apply HyCaMi to AES-256 implementa-
tions from OpenSSL 1.1.1d [13], mbedTLS 2.16.5 [19], Nettle 3.5 [23]
and LibTomCrypt 1.18.2 [18]. Despite implementing the same block
cipher, the library authors utilized LUTs of different sizes, resulting
in different cache-side-channel leakage characteristics [22]. For all
block ciphers, we consider the implementation of the key schedule
and the encryption algorithm. For the hardening, we have extracted
all LUTs into individual functions and replaced all LUT accesses
with calls to these functions. We then apply our new method to
these extracted functions as described in Section 4.
Setup: For the evaluation we use an Intel i9-10900K, considering
an attacker with access to a process running on the same system
observing a shared L1 data cache. This cache has a size of 32 KiB, a
line size of 64 byte and an associativity of 8.1 We assume an LRU
cache line replacement policy, since to the best of our knowledge,
the replacement policy is not publicized for this CPU. We confirm
the functional correctness of the hardened AES-256 binaries using
test vectors from the NIST Cryptographic Algorithm Validation
Program [2]. For the DES, 3DES and Camellia binaries we compare
the output of the original program to the hardened variants for
10.000 random generated inputs.

5.1 Evaluation of generated Circuits / LUTs
In Table 2, we give a brief overview of the distribution of differ-
ent types of LUT in the generated circuits. A difference between
DES/3DES and the other two block ciphers is immediately visible.
AES and Camellia both use 8-input, 8-output S-boxes, whereas DES
uses 6-input, 4-output S-boxes. In the AES implementations we ana-
lyzed, these S-boxes are not used directly, but combined with other
operations into larger 8-input 32-output LUTs for increased perfor-
mance. We thus conclude that these underlying differences in the
structure lead to different characteristics in the LUT distribution.

We can also see how the number of possible inputs affects the
distribution and overall number of gates in the resulting circuit. Due
to allowing for more inputs to be gathered in one gate, the 8-input
LUT circuits have consistently lower gate counts. Averaged over
the four AES implementations tested, the 6-input circuits have ∼
14× more LUTs. The 6-input circuits for Camellia and DES/3DES
are 8.4× and ∼ 4.3× larger, respectively. This has an effect on
the runtime performance, which is discussed in Section 5.2. Also
noteworthy are the high numbers of 1-input, 6-output and 1-input,
1This information was obtained using the command-line tool lstopo.
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module Te(x);
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table_11[addr_11 ];

...

XLS Yosys LUT merging LUT2C

Figure 2: Synthesis flow

Library Cipher Inputs/Outputs

Se
cL
U
T-
6

4/1 6/1 6/2 6/5 other

mbedTLS DES 0 150 21 3 85
mbedTLS 3DES 0 150 21 3 85
mbedTLS Camellia 60 0 16 20 72
mbedTLS AES-256 167 0 26 28 121
OpenSSL AES-256 152 0 22 25 100
Nettle AES-256 167 0 26 28 121
LibTomCrypt AES-256 170 0 24 29 120

Se
cL
U
T-
8

1/6 8/5 1/7 8/7 other

mbedTLS DES 20 10 10 0 20
mbedTLS 3DES 20 10 10 0 20
mbedTLS Camellia 0 0 8 8 4
mbedTLS AES-256 0 4 2 6 13
OpenSSL AES-256 0 4 0 4 12
Nettle AES-256 0 4 2 6 13
LibTomCrypt AES-256 0 4 0 4 17

Table 2: Distribution of LUT gate sizes in generated circuits

7-output gates. As a 1-input LUT can only have 2 distinct outputs,
further output wires are redundant. This issue occurs because the
LUT merger treats individual LUTs as black boxes, making it unable
to group output wires together based on their function. Removing
this limitation is worth investigating in the future.

5.2 Runtime Overhead
Table 3 illustrates the runtime analysis of programs hardened with
6-input and 8-input LUTs, compared to their original versions. This
analysis involved averaging the runtime over 1,000,000 executions
of the key schedule and encryption functions for each covered
implementation, further averaged across 20 repetitions to ensure
consistency. The results confirm a significant increase in runtime
overhead due to the hardening process, particularly impacting ci-
phers like AES-256 with larger original LUTs more than those with
smaller LUTs, such as DES and 3DES. Notably, the data also reveals
that the binaries hardened with the SecLUT-8 configuration exhibit
enhanced performance, being 2.6× to 4.5× faster than those in the
SecLUT-6 configuration, thereby indicating that larger LUTs in the
hardening step contribute to improved runtime efficiency.

5.3 Leakage Assessment
To evaluate the cache side-channel leakage we use the static analy-
sis tool CacheAudit v0.3. For both case studies we analyze wrapper
programs that first set up library specific data structures and then
call the key schedule and encryption function. The key and mes-
sage are left uninitialized such that CacheAudit considers them as
private input with unknown value. The wrapper programs are com-
piled with gcc 9.3.0 using the parameters -m32-fno-stack-protector
to obtain x86 binaries compatible with the tool. The analysis results
are depicted in Table 4. As expected the results for the original
programs reveal potential side-channel leakage across all consid-
ered block cipher implementations. The evaluation confirms for
the examples the SecLUT-6 configuration is fully secure against
cache side-channels, while programs hardened via the SecLUT-8
configuration are still potentially leaky but have reduced bounds
when compared to the original program. Moreover, as predicted
the leakage bounds for accd stayed below 3.17 bits. We therefore
have shown that HyCaMi offers two types of hardening depending
on developer needs. Either the framework generates a fully secure
binary or a faster binary is leaky but still has better side-channel
security properties than the original program.

Library Cipher Orig. SecLUT-6 SecLUT-8

mbedTLS DES 0.25 𝜇s 6.0 𝜇s/024.0× 2.3 𝜇s/09.2×
mbedTLS 3DES 0.61 𝜇s 17.8 𝜇s/029.5× 6.9 𝜇s/11.3×
mbedTLS Camellia 0.32 𝜇s 14.7 𝜇s/046.0× 4.0 𝜇s/12.6×
mbedTLS AES-256 0.16 𝜇s 26.8 𝜇s/143.3× 5.9 𝜇s/37.4×
OpenSSL AES-256 0.16 𝜇s 24.6 𝜇s/156.3× 6.5 𝜇s/40.9×
Nettle AES-256 0.22 𝜇s 22.8 𝜇s/103.3× 5.7 𝜇s/25.7×
LibTomCryptAES-256 0.89 𝜇s 23.5 𝜇s/026.5× 6.8 𝜇s/07.6×
Table 3: Runtime Performance Evaluation on Intel i9-10900K

5.4 Comparison to Related Methods
We compare our new framework to RiCaSi, the only framework that
generates hardened binaries that are statically verified to be secure
against cache side-channels. For the comparison, we apply RiCaSi
to the same block cipher implementations as HyCaMi. Table 5
shows the comparison of runtimes for the combined hardened key
schedule and encryption implementation. Since RiCaSi only offers
the option to completely harden a program, the comparison focuses
on the fully secure SecLUT-6 configuration. Our comparison shows
that HyCaMi is up to 9.6× faster than RiCaSi. Moreover, we can also
see that the speedup is higher for Camellia, and the four AES-256
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Library Cipher Attacker Model
acc accd trace time

O
rig

in
al

mbedTLS DES 32.6 32.0 120.0 6.9
mbedTLS 3DES 32.6 32.0 376.0 8.5
mbedTLS Camellia 17.8 16.0 236.0 7.9
mbedTLS AES-256 71.0 66.3 275.0 8.1
OpenSSL AES-256 68.1 64.5 274.0 8.1
Nettle AES-256 71.6 66.3 271.0 8.0
LibTomCrypt AES-256 161.3 99.3 274.0 8.1

Se
cL
U
T-
6

mbedTLS DES 0.0 0.0 0.0 0.0
mbedTLS 3DES 0.0 0.0 0.0 0.0
mbedTLS Camellia 0.0 0.0 0.0 0.0
mbedTLS AES-256 0.0 0.0 0.0 0.0
OpenSSL AES-256 0.0 0.0 0.0 0.0
Nettle AES-256 0.0 0.0 0.0 0.0
LibTomCrypt AES-256 0.0 0.0 0.0 0.0

Se
cL
U
T-
8

mbedTLS DES 2.0 0.0 14.0 3.9
mbedTLS 3DES 2.0 0.0 28.0 4.9
mbedTLS Camellia 4.0 0.0 58.0 5.9
mbedTLS AES-256 13.4 2.6 143.0 7.2
OpenSSL AES-256 9.3 1.0 0.0 0.0
Nettle AES-256 13.4 2.6 135.0 7.0
LibTomCrypt AES-256 9.7 2.0 88.0 6.5

Table 4: Cache Side-Channel Leakage Bounds in [bit] for a 32KiB,
8-way associative, cache with 64 byte cache lines and LRU policy

Library Cipher HyCaMi RiCaSi [21] Speedup

mbedTLS DES 6.0 𝜇s 7.0 𝜇s 1.2×
mbedTLS 3DES 17.8 𝜇s 26.8 𝜇s 1.5×
mbedTLS Camellia 14.7 𝜇s 103.5 𝜇s 7.0×
mbedTLS AES-256 26.8 𝜇s 216.8 𝜇s 8.1×
OpenSSL AES-256 24.6 𝜇s 214.9 𝜇s 8.7×
Nettle AES-256 22.8 𝜇s 217.9 𝜇s 9.6×
LibTomCrypt AES-256 23.5 𝜇s 225.7 𝜇s 9.6×

Table 5: Comparing the runtime of key schedule and encryption
between ciphers hardened with HyCaMi (SecLUT-6) and RiCaSi [21]

implementations. That is, our implementation is more effective for
the four block ciphers with larger LUTs in the initial program.

6 CONCLUSION
This paper introduces HyCaMi, a pioneering framework designed
for enhancing the security of block cipher implementations against
cache side-channel attacks. This advancement leverages LUT-based
high-level synthesis combined with quantitative side-channel anal-
ysis. Central to our methodology is a novel technique for translating
LUT-based circuits into C code. This allows us to delve into the
trade-offs between side-channel security and operational efficiency
by varying the LUT sizes. Our implementation of HyCaMi yields
two distinct outcomes: one is a 6-input LUT-based binary inherently
immune to cache side-channel attacks, and the other is an 8-input
LUT-based binary that maintains minimal leakage potential.
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