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Abstract. Mobile contact discovery is a convenience feature of messen-
gers such as WhatsApp or Telegram that helps users to identify which of
their existing contacts are registered with the service. Unfortunately, the
contact discovery implementation of many popular messengers massively
violates the users’ privacy as demonstrated by Hagen et al. (NDSS 21,
ACM TOPS ’23). Unbalanced private set intersection (PSI) protocols
are a promising cryptographic solution to realize mobile private contact
discovery, however, state-of-the-art protocols do not scale to real-world
database sizes with billions of registered users in terms of communication
and/or computation overhead.

In our work, we make significant steps towards truly practical
large-scale mobile private contact discovery. For this, we combine
and substantially optimize the unbalanced PSI protocol of Kales et
al. (USENIX Security ’19) and the private information retrieval (PIR)
protocol of Kogan and Corrigan-Gibbs (USENIX Security ’'21). Our
resulting protocol has a total communication overhead that is sublin-
ear in the size of the server’s user database and also has sublinear online
runtimes. We optimize our protocol by introducing database partition-
ing and efficient scheduling of user queries. To handle realistic change
rates of databases and contact lists, we propose and evaluate different
possibilities for efficient updates. We implement our protocol on smart-
phones and measure online runtimes of less than 2s to query up to 1024
contacts from a database with more than two billion entries. Further-
more, we achieve a reduction in setup communication up to factor 32x
compared to state-of-the-art mobile private contact discovery protocols.
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1 Introduction

The number of users of mobile messengers such as WhatsApp, Telegram, and Sig-
nal has been rising for over a decade. In 2020, WhatsApp reached two billion
monthly active users [25]. Messengers connect these users by presenting them a
selection of their existing address book contacts who are registered with the same
service. This convenient feature is called mobile contact discovery and requires
matching users’ contact lists with the service’s database. The address book of
users is also checked regularly to ensure an up-to-date list of possible contacts.
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However, a recent survey [33] showed that five out of eleven studied messen-
gers, including WhatsApp and Telegram, implement contact discovery by obtain-
ing their users’ contact lists in plaintext. Thus, service providers not only learn
about mutual contacts, but also information of unregistered contacts. Based on
this, the entire social graph of users, possibly containing sensitive information,
can be inferred. Even if a user has never signed up with a messenger or social
media platform, contact discovery services might have already stored their per-
sonal data. Meta, WhatsApp’s and Facebook’s parent company, which acquired
WhatsApp in 2014 for 16 billion USD [58], has acknowledged this with a tool that
lets non-users check, delete, and block their data from several of their services’
contact discovery databases, however, excluding WhatsApp [29]. It is currently
unclear how these block lists are implemented and which privacy implications
they entail. Due to the availability of information, access to it might be enforced
legally (by governments) or illegally (by hackers).

A naive approach used by some messengers to protect privacy is to apply
a cryptographic hash function before uploading phone numbers. However, due
to the clearly defined structure and low entropy of phone numbers, the reversal
of a single hash is possible in less than 0.1 ms on commodity hardware [33].
The privacy-preserving messenger Signal thus uses hardware enclaves, specifi-
cally Intel SGX, to securely realize mobile contact discovery. However, the secu-
rity of enclaves is not trivial as even code without vulnerabilities can be subject
to various types of attacks [9,21,64,72].

The cryptographic approach for mobile private contact discovery is to apply
protocols for unbalanced private set intersection (PSI). In our setting, the
server’s user database DB and the client’s phone contacts X each represent
one set (|X| < |DBJ) while only the client learns about the mutual elements.

Recent works [15,28,57,65] show promising results for fast and communi-
cation-efficient PSI in different use cases, but are still impractical for mobile
private contact discovery at large scale due to the required online computa-
tion performed by the server. With over two billion WhatsApp users [25], the
unbalanced PSI protocol by Cong et al. [15] requires less than 80 MiB of total
communication, but more than 35s online time with multi-threading (T=24
threads) to query |X| = 20 client contacts. Hence, the protocol by Kales et
al. [43] based on oblivious pseudorandom functions (OPRFSs) is still state of the
art for private contact discovery due to its fast online runtimes (linear in | X| and
less than 3s for |DB| = 228, |X| = 219 [43]) and optimization for mobile devices.
However, this protocol has setup communication and client storage costs linear
in the database size — 8 GiB for |DB| = 23! — which also makes it impractical for
large-scale messengers. To make such protocols viable, communication sublinear
in the database size is necessary. The authors of [23,43] thus recommend using
a protocol for multi-server private information retrieval (PIR) in PSI to achieve
sublinear communication.

Our Contributions. In this work, we make big steps towards truly practical
mobile private contact discovery by reducing the setup communication to be
sublinear in the size of the server’s database. The authors of [23] already achieved
this, however, their protocol requires online computation linear in the database
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size. We achieve both, total communication and online computation sublinear in
the database size. For this, we survey the current literature and select the offline
online PIR (OO-PIR) protocol by Kogan and Corrigan-Gibbs [46] as a building
block for its sublinear complexities. By combining the state-of-the-art protocol
for unbalanced PSI on mobile devices [43] with OO-PIR [46], we obtain an
asymptotically and concretely efficient mobile private contact discovery protocol.

We further extend our protocol to handle large sets, i.e., databases with up
to |DB| = 23! items, to meet the requirements of real-world messengers. To
our knowledge, we are the first to consider a database with more than a billion
records in unbalanced PSI (8x more than related works [23,43,45,66,70]). For
this setting, we reduce the setup communication by up to factor 32x over the
state-of-the-art protocol of [43]. To prevent the inefficient processing of a large
database as a whole, we let multiple instances of the PIR protocol operate on
smaller database partitions. Queries to these partitions should not reveal to
the server which database partitions are of interest to the client. Therefore, we
schedule these queries based on a balls-to-bin analysis similar to [23,60,62]. This
reduces communication by a factor up to 24x compared to the naive approach
of sending the maximum possible number of queries to all partitions to hide the
information which partitions are of interest.

We also study ways to efficiently handle updates to client contact lists and
server databases. For this, we evaluate solutions for dynamic databases proposed
by recent literature [23,43,46,51] and improve on their ideas for our protocol
design. With less than 3 MiB/day for processing a realistic number of 22! daily
updates [32,33], our resulting protocol has the lowest communication cost.

Finally, we implement our protocol on smartphones to demonstrate feasibility
and obtain concrete runtime measurements in realistic WiFi and LTE network
settings. Over WiFi, we achieve an online runtime of less than 2s for |DB| =
231 database records and |X| = 20 phone contacts. Further highlights of our
implementation include containerized builds for improved reproducibility, multi-
threading for additional runtime improvements, and significant optimizations of
the original PIR implementation of [46]. Our implementation “DISCO” (short
for “DIScover COntacts”) is available at https://encrypto.de/code/disco.

To summarize, our main contributions are as follows:

— New mobile private contact discovery protocol based on unbalanced PSI [43]
and private information retrieval (PIR) [46] with sublinear total communica-
tion and online runtime.

— Reproducible, multi-threading-capable implementation on mobile clients.

— Large-scale evaluation for databases with more than two billion records and
online runtime of less than 2 seconds over WiFi.

— Efficient update strategy with less than 3 MiB / day of additional communi-
cation costs.

2 Preliminaries

In this section, we describe the basic concepts used in our work, specifically
protocols for oblivious pseudorandom function (OPRF), private set intersection
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(PSI), and private information retrieval (PIR). We also explain Cuckoo filters
(CFs), a probabilistic data structure used in our protocol.

Oblivious Pseudorandom Function. An oblivious pseudorandom function
(OPRF) is a secure two-party computation (STPC) protocol where the computed
public function f is a keyed pseudorandom function (PRF). Party P, inputs
key k and P; inputs a value x for which P; obtains the PRF output f(z).
Both parties stay oblivious about the other party’s input and only P; obtains
the OPRF output. OPRF constructions can be used to realize PSI protocols, as
shown in a variety of works, including [27,34,43,45,61]. We focus on the Naor-
Reingold PRF (NR-PRF) [56] and PRFs that evaluate block ciphers such as AES
and the STPC-friendly cipher LowMC [1] using Yao’s garbled circuit (GC) [73],
a generic protocol for STPC. These OPRF's offer malicious client security [45,
61] and their implementations were already optimized for mobile devices [43].
While recent works [12,65,67] improve over our selected OPRFs, we leave their
evaluation as future work and focus on reducing the setup communication and
client storage of the state-of-the-art protocol for mobile private contact discovery.

Cuckoo Filter. A Cuckoo filter (CF) is a probabilistic data structure for fast
membership testing. A CF stores tags (i.e., short representations of items),
where each tag is located in one of h possible buckets and each bucket con-
tains up to b tags. The tag of x with length v is computed using hash func-
tion Hy: t, = Hy(z) € {0,1}” and its possible positions are determined by h
hash functions [26]. CFs are similar to Bloom filters (BFs) [7], but have better
performance, reduced storage, and allow item deletion. Hash collisions for tags
can result in false positives. We follow the parameter recommendations in [43]
with bucket size b = 3 and tag size v = 32 for a false positive probability (FPP)
of € <2b/2° ~ 2729,

Private Set Intersection. In protocols for private set intersection (PSI), two
parties P; and P> hold sets X; and X5, respectively. They want to know their
mutual items (i.e., X7 N X5) without revealing anything else about their sets.
State-of-the-art PSI protocols for large sets build on the oblivious key-value
store (OKVS) data structure [28,57,65]. However, they require online communi-
cation linear in the size of the larger set. Another line of work on unbalanced PSI
based on fully homomorphic encryption (FHE) [13-15] has a small communica-
tion footprint, but is not well suited for large-scale contact discovery as the server
online computation is linear in the database size for each client.

In this work, we thus focus on unbalanced OPRF-based PSI protocols [20,
34,43,45,61] for mobile private contact discovery. The high-level idea requires
server S, holding the larger set DB, to sample a secret key k and to encrypt
its input using a PRF and k to obtain PRFy(DB]i]) for i € {1,...,|DB|}. This
encrypted set is sent to the client C' who stores it. Both parties then run the
corresponding OPRF protocol on C’s input X[i] for ¢ € {1,...,|X|} and S’s
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key k such that C' obtains the encrypted values PRF}(X[i]) and locally checks
which of them are contained in the server’s encrypted set. The performance of
such PSI protocols is great in the online phase (independent of | DB|), but suffers
from high setup communication and client storage requirements (linear in |DB)),
which prohibits applicability for mobile private contact discovery at large scale.
In this work, we make significant steps towards practicality by replacing the
download in the setup phase with a protocol for PIR for reduced communication
and storage requirements.

Private Information Retrieval. Protocols for PIR enable a client C' to pri-
vately obtain a record from a public database with Np;i records while the server
stays oblivious about the requested item. The server’s computational cost must
be inherently linear in the database size, as the server would otherwise learn
which elements the client is not interested in [6]. PIR with preprocessing is thus
critical to achieve online complexities sublinear in the database size Nprr by
shifting the linear costs to an offline phase. We comprehensively surveyed single-
and multi-server PIR protocols with preprocessing for our use case (cf. Sect. A).
The state-of-the-art single-server PIR protocols [22,37,53,55] are based on FHE:
The client uses FHE to hide their query from the server while also enabling the
server to answer their query under encryption. In a large-scale deployment sce-
nario, the client-independent preprocessing in [22,37] offers a significant advan-
tage as server costs otherwise depend on the high number of clients. While these
protocols are most promising in the single-server setting, the parties still perform
online computation linear in Np;r. Also, online communication costs with query
batching are impractically high at large scale. Moreover, FHE-based protocols
have yet to be implemented and evaluated for this use case on mobile devices.
In the setting with multiple non-colluding servers (see Sect. 4.2 for a detailed
discussion), different strategies have been proposed [10,18,31,46,51,68]. We
select the two-server OO-PIR protocol in [46] for its sublinear online complex-
ities (communication in O(log Nprr) and computation in O(v/Nprr)), existing
mobile implementation, and database update strategies [46,51]. We refer to the
required servers as offline server S,g and online server S,,, and give an informal
protocol description of the protocol in [46]: In the offline phase, S,z randomly
samples Nges sets, each containing +/Nprr database indices, calculates the par-
ity of each set, and sends sets and parities as hints to client C. The parame-
ter Ngets = A/ Nprrlog2 is chosen to ensure that any database index appears
in at least one set with overwhelming probability [46] based on the statistical
security parameter \. In the online phase, the client finds a set that contains
the index idz they want to query, and they remove it from the set in a pro-
cess called puncturing, i.e., Set; = Set; \ {idz}. The client sends the punctured
set Set; to the online server S,,, which returns the parity of the received set.
The requested database record DB[idx] is reconstructed from the punctured
and the unpunctured sets’ parities, 1.e., Yids = Pset; D Pser;- Reusing the set Set;
leaks information about the queries to the server. Thus, the client generates a
new set containing the requested index to ensure that the set remains random
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while at least one set still contains index idz. The client obtains the parity for
the new set by puncturing it, requesting the punctured set’s parity from the
offline server, and adding the database record they just retrieved for idx to the
parity. The sublinear communication cost of [46] is achieved by transmitting the
sets in compressed form as set keys, which are puncturable PRF keys.

3 Related Work

We focus our discussion of related works on unbalanced PSI for mobile private
contact discovery. Nevertheless, we acknowledge the existence of further unbal-
anced PSI protocols based on FHE [13-15], which are not suitable for large-scale
contact discovery because the server performs computation linear in the large
database for each client in the online phase (cf. Sect. 2).

Our protocol is based on the mobile private contact discovery protocols in [23,
43,45]. In [45], the authors improve PSI for the unbalanced setting and mobile
clients by shifting the required setup computation and communication costs that
depend linearly on the database size | DB]| to a novel precomputation phase. They
further reduce the communication and storage costs by storing the larger set in
a Bloom filter, a probabilistic data structure similar to Cuckoo filters (CFs).
The authors of the state-of-the-art unbalanced PSI protocol for mobile private
contact discovery [43] build on the promising results of [45] and optimize the
performance as well as communication cost of two OPRF-based PSI protocols
with malicious client security. By integrating and optimizing a two-server PIR
protocol [46] in the protocol design of [43], we achieve a reduction in setup
communication by 32x at only marginally higher online costs (cf. Sect. 5).

A combination of two-server PIR and PSI for private contact discovery was
first proposed in [23] with PIR-PSI. Their protocol also achieves sublinear com-
munication complexity in the database size. However, due to a lack of PIR-
preprocessing, the servers in PIR-PSI perform online computation linear in the
database size for each query, which prohibits large-scale deployments. Further-
more, the constructions and base protocols differ: The authors of [23] improve the
performance of the balanced PSI protocol of [47] by running PIR based on dis-
tributed point functions (DPFs) [10,11] to reduce the input set sizes. Instead,
we use OO-PIR by [46] to reduce the communication of unbalanced OPRF-
based PSI [43] for mobile devices. PIR-PSI, similar to our work, models query
scheduling as a ball-to-bins problem (cf. Sect.4.3). In contrast to our proto-
col, PIR-PSI requires inter-server online communication (32 kiB for |X| = 219
for each client), which incurs 8x higher financial costs compared to computa-
tion [41].

In addition to mobile contact discovery, contact tracing and compromised
credential checking (C3) are two other use cases for our protocol. Epione [70]
combines public key (PK)-based PSI with keyword-PIR for efficient privacy-
preserving contact tracing. Epione also achieves sublinear online communication
but requires online computation linear in |[DB| and has a high online inter-server
communication cost. Protocols for C3 are deployed in web browsers to check
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if one credential is in a database of leaked credentials (|DB| =~ 12.5 billion [31,
46,71]). For this, PK-based PSI protocols are used in practice; however, to reduce
communication overhead, a hash prefix is leaked to the server to indicate which
partition of the encrypted database must be downloaded [49,69]. PIR protocols
such as [31,46], as well as our work, could be used to mitigate attacks that
leverage this leakage.

4 Our Protocol

Our protocol (Fig. 1) provides computational security and assumes a semi-honest
setting with two non-colluding servers, S,z and Sop, (we discuss malicious client
security in Sect. 4.2). Client C' inputs their set of phone contacts X of size | X|,
and the messaging service inputs their user database DB of size |DB|, which is
encrypted and encoded in a Cuckoo filter CF. We divide the database of the PIR
protocol into Npg,¢ partitions, where CF, € {CF,..., CFn,,,,}, to allow for
large databases. This requires a scheduling of queries to reduce communication
while preventing leakage (cf. Sect.4.1).

Our protocol is divided into base, setup, and online phase, as introduced
by [45]. The client-input-independent parts of the protocol, i.e., base and setup
phase, are considered to be offiine. The base phase of our protocol is input-
independent and contains the OPRF precomputation between C and S,z as
well as the server’s generation of the secret key k. This phase is identical to the
base phase in [43]; it has a communication complexity of O(|X|P™) and allows
the client to check up to | X |P™ contacts in the online phase. We split the server-
input-dependent setup phase into client-independent setup and per-client setup.
The server setup is run only once and includes the encoding of the database
and CF creation by S,g. Son receives no cleartext data, only the CF containing
the encrypted and hashed values. The per-client setup has to be executed once
for each client and consists of the offline phase of our extended PIR protocol [46].

Our protocol’s online phase combines those of [43] and [46]. C' and Sog run
the OPRF protocol on their respective inputs x; € X and k, and C' obliviously
obtains e; = PRFy(xz;) for i € {1,...,|X|}. C simulates the offline server’s data
placement in the CF for their encrypted inputs to learn which CF buckets to
retrieve via PIR. The encrypted value e; is in one of two possible CF buckets
if x; € DB, and C retrieves both to locally check if e; € CF, i.e., x; € DB.
PIR queries to Sog and S,, are generated for each index based on the stored
hints for CFpy-. Sending only those actual queries reveals to the server which
partitions interest the client. We show in Sect. 4.1 how to avoid this by sending
dummy queries in a communication-efficient manner.
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Client (contacts Tief1,..,|X|}) Servers SaﬁT, Son”
1. Base Phase’

Generate secret key k'

OPRF Precomputation’ OPRF Precomputation’

2.1 Server Setup Phase’*
Encrypt all database records with key k
and insert them into Cuckoo filter CF'
Partition CF and send it to Sy, *
2.2 Per-Client Setup Phase'

Generate PIR hints hy,

Hint Request!
d for each partition CF,"

h <+ {h1,...,H T
Store hints {M UN par |

3. Online Phase'”"
Run OPRF for all z;

€XT; ——>

OPRF |[«— kf

Compute CF positions €i +—j
idx; 5 for all e;, j € {0,1}

Schedule PIR queries for all positions
to all partitions CF, using h

k queries for CF,™

Tx Answer queries’*
k answers for CF,' a

Reconstruct PIR answers to
obtain CF[idz; ;] and check if
CF tag for e; is included

Fig.1. Protocol phases for communication-efficient OPRF-based unbalanced PSI
with two-server PIR. Offline server S,z marked with T, online server S,, with *.

4.1 Database Partitioning and Querying

We assume messenger services with up to |DB| = 23! users and CFs with up
to Ngp = 2[loga (IDBI/6)1 — 930 pyyckets. To our knowledge, this work is the first to
consider a database of this size in the context of mobile private contact discovery.
Our selected PIR protocol [46] requires offline computational cost linear in the
database size and parties have to process sets with /Npjp items. Using the CF
as PIR database (i.e., Npjg = Ngp) thus leads to poor performance and high
memory requirements. Additionally, sets of this size are not supported by the
existing OO-PIR implementation [46].

We avert these limitations by partitioning the database and running the
protocol on smaller database partitions at a time. The PIR database size now
depends on the number of partitions Nps+ where Nprr = Neop/Npgrt. A smaller
number of partitions generally requires less communication since less PIR exe-
cutions are needed, but higher computational cost due to the increased database
size Nprr. We consider this trade-off in the parameter selection for our partition-
ing. Database partitioning further allows us to distribute the workload between
multiple servers to improve the performance and scalability of our protocol.

With database partitioning, if the client would only query the desired indices,
the server would learn which partitions are of interest to the client. This
leakage could easily be prevented with dummy queries to all other partitions
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to conceal the actual queries. However, this naive approach requires in the
worst case 2|X|Npg queries — more than 73 MiB of online communication
for |DB| = 231, | X| = 210,

The literature presents various approaches for scheduling queries [3,36,42],
also called batching, to reduce communication or computational cost. In [74],
the feasibility of using batching techniques in OO-PIR protocols is studied, and
a lower bound for communication and time in the preprocessing phase of ¢ - r =
2(Npjrk) is proven for batch size k, hint size r, and online time ¢. The authors
show that server performance improves at the cost of higher client runtime, and
communication. They conclude that the benefits of PIR protocols in the offline-
online model and batching are not compatible. Probabilistic batch codes [3]
in OO-PIR achieve this lower bound, but due to the high storage requirements
and client costs of this technique, we conclude that (probabilistic) batch codes
are not practical for our use case.

Instead of optimizing the query scheduling with batch codes, we focus on
leveraging our protocol’s underlying data structure: Cuckoo filters. Items in a CF
are distributed uniformly under the assumption of uniformly random hash func-
tions, and that the items are chosen independently from the hash functions and
from each other (note that our items are encrypted set elements) [24]. This allows
us to represent the query scheduling as a balls-to-bin problem, where we ask for
the maximum number of balls in any bin when placing n balls independently
into B bins chosen uniformly at random. We assume 3 = Npg,¢ bins (i.e., DB
partitions) and n = 2|X]| balls (i.e., queries), and use Eq. (1) based on [62,63]
to calculate the probability p of any bin containing more than k& balls after
inserting n balls into § bins.

k—1 n 1 7 1 n—1i B

pzlf(zz':o(i> (B) ’(173) ) : (1)
We require this probability to be negligible, i.e., p < 2740, Based on this
formula, we determine k via a Mathematica script as the maximum number of
queries made to each of Npg partitions for 2|X| actual queries, and achieve
a reduction in communication in the worst case by up to factor 24x, and only
require 3 MiB instead of 73 MiB for |DB| = 23!, | X| = 2!0. We note that [63] pro-
vide a closed-form solution for the balls-to-bin problem (but with an unspecified

constant 7), which we leverage for our asymptotic analysis in Sect. 4.2.

4.2 Complexity and Security Analysis

We now discuss our protocol’s communication complexity and analyze its secu-
rity.

Complexity. Our protocol consists of OPRF and PIR invocations. The con-
sidered parameters are the client contact list with size |X| and at most |X|P"®
precomputed entries; the server database has |DB| entries, which are processed
in our protocol in Np,,; database partitions of size Np;r. The asymptotic com-
munication complexity for OPRF is the same as in [43], namely O(|X|?™) in
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Table 1. Comparison of asymptotic communication complexities considering database
size | DB, client set size | X | with at most |X|"™ elements, and the number of database
partitions Nper+ = Nerp/Npir for partition size Npjg.

Phase [43] Ours

Base | O(|X["") O(1X|)

Setup | O(|DB|) O(Npartv/Nprr)

Online| O(|X|) | O((|X| + v/|X[Npart 10g Npare) log Npir)

the base and O(|X|) in the online phase. In our PIR protocol, each CF bucket
with b = 3 tags of size v = 32 bit is one record of length ¢ = v - b = 96 bit.
The concrete communication cost for running PIR on Npg~ partitions of
size Nprg = |DB|/Npart, |X| client inputs, record length ¢, and a constant
factor «y is as follows:

— offline communication: Npg.¢ - A(¢/Nprg + 1) bits.
— online communication:

2| X 2| X
Npgrt - [X] + [X] -logs Npare | - (2(A+ 1) logy Nprg + 4€) bits.
NPart NPart

bits per PIR query [46]

num. queries to each partition [60,62,63]

Based on this, we can compare the asymptotic communication complexi-
ties of our full protocol with the state-of-the-art protocol in [43] in Tablel.
Our protocol achieves sublinear communication cost in the setup phase, improv-
ing significantly over the linear costs in [43]. The online phase of our protocol
includes the communication cost of [43] in addition to the PIR protocol being
executed for | X| client items on Npg, partitions. The amortized total communi-
cation cost per client item is still significantly smaller in our protocol compared
to [43] (cf. Sect.5.3).

Security. We now discuss the security of our protocol provided by the under-
lying OPRF and PIR building blocks. We first discuss malicious client behavior
and then assumptions required for the server side.

The OPRF protocols used in this work, NR-ECC-OPRF [27,34,43,56]
and GC-LowMC-OPRF [1,20,43,61], guarantee malicious client security when
using maliciously secure oblivious transfer (OT) [59] and OT extension [5,44]
protocols. PIR protocols generally assume a public database with possible leak-
age to the client, hence there are no concerns regarding privacy leakage caused
by malicious behavior of clients. Furthermore, our protocol’s underlying struc-
ture prevents clients (and additional servers) from obtaining cleartext database
records as they only ever receive encrypted and hashed values as part of the CF.
However, in [51], the authors describe an attack on updated databases that
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enables a malicious client to obtain deleted database records. Therefore, no for-
mal malicious client security is possible for our protocol with updates via in-place
edits (cf. Sect.4.3). We note that clients can generally monitor the database
to learn about added and deleted items, so we consider the attack by [51] as
irrelevant in our setting and leave the task of formally establishing malicious
client security for OO-PIR without updates as future work. Malicious clients
can also easily test if the database includes a certain number by running the PSI
protocol. Due to the limited entropy of phone numbers, rate limiting of client
queries is recommended to restrict the possibility of misuse via large-scale crawl-
ing attacks [32,33,43].

A malicious server could sabotage the OPRF and PIR sub-protocols by send-
ing incorrect information or by using another input set. As only the client obtains
the intersection, this only affects correctness. However, the authors of [43] observe
that messengers will afterwards most likely receive the outcome of the inter-
section and could thus learn about non-registered users in the client’s contact
list in case they include additional entries in their database. Therefore, ser-
vice providers must be semi-honest, which is reasonable to assume as they are
bound by legal requirements and would face significant financial and reputa-
tional risk when detected cheating. As we operate in a multi-server PIR setting,
we furthermore have to assume two non-colluding servers. This is a prominent
assumption in multi-server protocols for reducing computation and communica-
tion costs. We see several successful real-world deployments of protocols utilizing
this assumption, e.g., the Internet Security Research Group (ISRG) is provid-
ing a non-colluding server for data aggregation and analysis with their “Divvi
Up” system [40] based on “Prio” [16] and “Poplar” [8]. The ISRG further runs
non-colluding servers for privacy-preserving COVID-19 analysis in North Amer-
ica [4,39]. The use of financial incentives [30] and the execution of secure crypto-
graphic protocols inside of trusted execution environments (TEEs) that provide
remote attestation (e.g., Intel SGX) could further strengthen the non-collusion
assumption between servers.

4.3 Updates

To design our protocol for real-world messaging applications, considering the
ever-changing user base and client contacts is essential. The authors of [32,33]
based on publicly available data assume daily change rates of CR ~ 0.1% for Sig-
nal, 0.5% for Telegram, and only 0.05% for WhatsApp. We therefore assume a
slowly growing messenger user base with daily updates of at most 1%, which is
already very high given the real-world data of messengers [32,33].

Updates to the client’s phone contacts can include adding or deleting a phone
number, and updating a contact’s details. Since the client’s input is only relevant
in the online phase, the handling of updates is trivial: The client can simply run
the online phase of the contact discovery protocol for newly added or updated
phone numbers to obtain the information if these numbers are registered with a
service. Deleted phone numbers are no longer included in the client’s set.
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Database updates in our protocol could be handled by rerunning the PIR
setup and online phase. While this strategy would be simple, the costs would
significantly increase with realistic database growth rates, thus making this app-
roach impractical. We therefore propose and evaluate different update strategies
for offline-online PIR [46,51] and PSI for mobile contact discovery [23,32].

Waterfall Updates. The authors of our selected PIR protocol [46] propose
waterfall updates, an update strategy with tiered sub-databases (called buck-
ets) of increasing size. The database is initially stored in one bucket for which
the client obtains hints. Updates are inserted into the smallest bucket until
this bucket reaches its maximum capacity and overflows into the next larger
bucket. The client obtains new hints for all buckets that changed. With this
strategy, hints for smaller buckets must be computed and communicated fre-
quently, while larger buckets change less often. With frequent updates, the per-
formance decreases and the client-dependent computational and communication
costs increase significantly, which makes this strategy impractical for large-scale
messengers and is thus excluded from further evaluations.

Updates via In-place Edits. The authors of [51] propose a different update
strategy for OO-PIR [46,68] that avoids additional databases by updating the
client hints to include the updated records. Within our protocol, PIR takes
the static-sized CF as a database such that each bucket is a database record
in PIR. Updates to the CF do not increase the number of buckets N¢op, only
their contents and the CF’s load factor, which indicates the occupancy level of the
filter. Thanks to our protocol’s underlying data structure, CFs, we can simplify
the approach in [51] by only considering bucket changes, i.e., in-place edits. With
this strategy, the server applies updates to the CF and sends the corresponding
bucket index idz and content change A to the client. The client updates all set
parities that contain idx by adding the received change, i.e., p «— p ® A. While
this approach seems straightforward, there is one caveat with the use of CFs:
an insertion to the CF can cause a chain of reinsertions where every affected
bucket changes and is thus another in-place edit, which potentially increases
this strategy’s communication cost a lot.

To better understand the impact of reinsertions to the CF, we simulate the
growing user base of messengers by inserting a certain percentage CR of the
initial database size |DB| to the CF over multiple days. Our simulation shows
that more than 80% of CF insertions are immediately successful during the
first days. This number decreases with an increasing load factor «, and at o =~
0.92 insertions start to fail — independent of the change rate CR. Thus, in the
following, we focus on the finer-grained change rate of 0.1% for a detailed analysis
of how many positions in the CF must be changed over time.

In Fig. 2a, we give the daily percentage of insertions that initially failed and
thus caused reinsertions. We see polynomial growth in the number of reinsertions
with increasing load factor in Fig. 2b. With a decreasing number of empty slots,
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Fig. 2. Simulation of updates to a CF for database size |DB| = 23!, N¢r = 23° CF
buckets, and a change rate of CR = 0.1%/day.

more reinsertions are necessary to insert an item, decreasing the filter’s perfor-
mance. OQur simulation shows that most insertions require only few reinsertions to
be successful, even when the CF is almost full, however, the number of long rein-
sertion chains is significantly increasing. We calculate the communication cost
of updates based on our simulation (cf. Table 2). Transmitting the in-place edits
of a single bucket requires bucket size + index length bit, here 128 bit, with an
average of 13.52 MiB/day for |DB| = 23!, CR = 0.1, and 30 d.

Updates via in-place edits allow the client to update their already stored
hints and to run the PIR protocol on the original CF. The daily download cost
of CF updates is thus the only additional cost to our PSI protocol. The server-
side computation of CF updates is client-independent and requires only XOR
operations. In comparison, the client-side hint updates require higher compu-
tational costs as all set keys must be evaluated to identify sets with updated
indices. Thus, the update procedure can either be applied at once or during the
regular online phase (which requires more client storage).

Additional Update Database. Next to updates to the PIR database, we
evaluate the strategy of incremental contact discovery [23,32], where updates
are stored in an additional smaller database on which another PSI instance is
run. The client then has to query each of their contacts on the original and the
update database. With our PSI protocol, communication and client storage of
updates require less than 3 MiB per day for |X| = 2!° contacts with a change
rate of CR = 0.1% / day for |DB| = 23,

We also evaluate the cost of running a simple public key (PK)-based PSI
protocol [19,52] due to its trivial implementation and reasonable communica-
tion cost as well as computational efficiency for smaller set sizes [35]. How-
ever, this turns out to be significantly less efficient for the considered growth
rates (cf. Table2). With less updates and smaller set sizes, PK-based PSI and
the state-of-the-art balanced PSI protocols could be more efficient though.
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Table 2. Comparison of average update communication costs per day consider-
ing |DB| = 2%, | X| = 2'°. Best results marked in bold.

Update Strategies @ Comm./day [MiB]
0.1%/day 0.5%/day 1.0%/day
1day |30days| 1day |30days| 1day |30days
In-place edits (Ours, Sect. 4.3) [51] 12.24| 13.52| 62.05| 107.77|126.23| 486.37
Additional database (Ours, Sect.4.3) [23,32]| 2.90| 2.90| 5.63| 5.63| 7.65 7.65
Additional database (PK-based PSI) [19,52] |65.60| 65.54|327.74 | 327.68|655.42 655.36

Comparison and Privacy Considerations. We compare the proposed
update methods in Table 2. Clearly, combining our PIR-based PSI protocol with
the incremental contact discovery strategy of [23,32] is the most efficient solu-
tion. We note that updates via in-place edits leak some information to the client
about the server’s change rate. Likewise, the size of additional update databases
clearly indicates this value. Also, when the client repeats the online phase of the
protocol for new contacts, this leaks information to the server about the number
of changes experienced by the client. Such information leakage can be prevented
using dummy insertions and dummy queries.

5 Evaluation

We implemented our protocol in C++4 and Go (based on the implementa-
tions of [43] and [46]) and describe our evaluation for large-scale set parame-
ters next. Our implementation supports multi-threading on partition level for
clients and servers, and introduces optimizations that reduce the client setup
time by factor 2.8x over [46] (cf. Sect.5.2). As described in Sect. 4.1, database
partitioning is implemented to circumvent hardware and computational limi-
tations of the underlying PIR protocol for large database sizes. For enhanced
reproducability, the server-side implementation is containerized. Our implemen-
tation called “DISCO” (short for “DIScover COntacts”) is available at https://
encrypto.de/code/disco.

5.1 Experimental Setup

To meet the requirements of large-scale messengers, we evaluate server database
sizes |DB| € {228,23'} and client contact list sizes |X| € {1,21°}. The
client is a OnePlus 8T smartphone with Snapdragon 865 octa-core CPU
(1 x2.84 GHz Cortex-A77, 3 x 2.42 GHz Cortex-A77, 4 x 1.80 GHz Cortex-A55)
and 12 GiB RAM. Our protocol requires two servers that we set up as Linux VMs
on a KVM host with two Intel Xeon Gold 6144 CPUs @ 3.50 GHz. Each VM
has 8 logical cores (mapped to 4 physical ones) and 128 GiB RAM. In the multi-
threaded benchmarks, denoted with T=4/8, the server uses 4 and the mobile
client 8 threads. The number of threads is based on the number of available
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physical cores as we did not see sufficient performance increase on the server
side when putting all logical cores under maximum load.

We consider two network settings: WiFi with 566 MBit/s down-/upload
speed and 124 ms RTT, and LTFE with 30 MBit/s down-/upload speed
and 49.3 ms RTT. The settings are simulated in a real WiFi network by limiting
bandwidth and introducing delay using tcconfig [38]. We evaluate the perfor-
mance of our PSI protocol for the NR-ECC- and GC-LowMC-OPRF. The OPRF
performance was measured on a single thread, the PIR costs on a single and mul-
tiple threads.

We benchmarked the impact of different partition sizes and select the best-
performing size for each database size considering the trade-off between offline
communication and online time.

5.2 Profiling and Optimizations

Via profiling we observed that a bottleneck in the online phase is the client’s
search for a hint/set that contains the desired index, which requires them to
expand each set key until the index is found. The implementation of [46] there-
fore adds a precomputation step that accelerates this search significantly by
generating a mapping between database indices and sets. We optimize the run-
time of this client setup by covering not all but only a certain percentage of
indices. This significantly reduces offline costs while the online computational
costs increase only marginally in the rare case that an index is not found in the
mapping table. Considering this trade-off and the requirement of a fast online
phase, we use a threshold of 99.99% for the client preprocessing, reducing the
one-time client setup time by 2.8x compared to [46] (286.78s for |DB| = 231).
Another bottleneck in the protocol is the required one-time computation in
the setup phase, including the server’s CF creation and client-dependent prepro-
cessing. With parallelization, we reduce the client-dependent setup costs signif-
icantly by up to 3.8x with T=4/8 over our protocol’s single-threaded setting.
Overall, we achieve a PIR online runtime of less than 1s for |X| < 219 client
contacts in the WiFi setting and an improvement of up to factor 8.3x with
multiple threads compared to the original single-threaded implementation.

5.3 Comparison to Related Work

We compare our protocol with the state-of-the-art mobile private contact dis-
covery protocol in [43] and PIR-PSI [23] (cf. Sect. 3).

Mobile Private Contact Discovery [43] (Table3). Our protocol replaces
the costly CF download in [43] — including its communication cost linear in
the database size — with a more communication-efficient PIR protocol. We give
the benchmark results of these protocols for NR-ECC-OPRF and GC-LowMC-
OPRF in Table3. Since both protocols have the same OPRF and CF setup
costs, we report these based on our Go implementation and calculate the CF
transmission time in the setup phase of [43] based on our connection speeds. With
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Table 3. Comparison of runtime and communication costs. Runtimes for [43] based
on our Go implementation’s CF setup and OPRF results. We set | X|?™ = | X]|. Best
results marked in bold.

Parameters ‘ Base ‘ Setup ‘ Online

Protocols ‘ Time [s] Comm. Time Comm. | Time[s] Comm.

DBl |X MiB] | Server erver [s Jlient [s MiB kiB]

IDBL X1 ppp PSI  Parameters \wiri pre MIB) Server - Server [5 Client [5 BB | iy prg (9P

| [min] (Per-Client) WiFi  LTE
[44] T =1 ‘ 0.07 0.29 0.04 | 590.46 — 15.17 285.95 1072.14| 0.06 0.12 4.05
NR-ECC Ours Npye=32,T=1 0.07 0.29 0.04 | 590.46 216.47 109.63 129.57 66.00| 0.83 5.23 38.79
Ours Npg: = 32, T=4/8| 0.07 0.29  0.04| 590.46 6371 3526 57.76 66.00 0.39 076  38.79
1
[44 T=1 0.09 0.36 0.06 | 33.26 — 15.17 285.95 1072.14| 0.04 0.07 2.02
GC-LowMC Ours Npa¢=32,T =1 ‘ 0.09 0.36 0.06 | 33.26 216.47 109.63 129.57 66.00| 0.81 5.18 36.76
Ours Npars = 32, T=4/8 0.09 0.36 0.06 | 33.26 63.71  35.26 57.76 66.00| 0.37 0.71 36.76
2% [44] T=1 ‘ 0.15 0.52 2.04| 590.46 — 15.17 285.95 1072.14| 2.20 2.29 4145.00
NR-ECC Ours Npye=32,T=1 0.15 0.52 2.04 | 590.46 216.47 109.63 129.57 66.00| 5.59 12.17 6097.25
Ours Npar = 32, T=4/8 ‘ 0.15 0.52 2.04| 590.46 63.71 3526 57.76 66.00 2.65 3.47 6097.25
210
[44 T=1 1.26 5.39 21.56| 33.26 — 15.17 285.95 1072.14| 0.63 1.22 2064.00
GC-LowMC Ours Npa¢ =32, T =1 ‘ 1.26 5.39 21.56| 33.26 216.47 109.63 129.57 66.00| 4.02 11.10 4016.25
Ours Npare =32, T=4/8 126 5.39 21.56| 33.26 63.71  35.26 57.76 66.00 1.08 240 4016.25
[44] T=1 ‘ 0.07 0.29 0.04 | 4752.34 — 121.23 2286.98 8576.00| 0.06 0.12 4.05
NR-ECC Ours Npor =64, T=1 0.07 0.29 0.04 | 4752.34 1988.81 961.48 1035.53 264.00| 1.93 10.78 77.54
Ours Npgre = 64, T=4/8 ‘ 0.07 0.29 0.04 | 4752.34 525.09 286.78 392.35 264.00| 0.49 1.43 77.54
1
[44) T =1 0.09 0.36 0.06 | 269.82 — 121.23 2286.98 8576.00 0.04 0.07 2.02
GC-LowMC Ours Npuri =64, T =1 ‘ 0.09 0.36 0.06 | 269.82 1988.81 961.48 1035.53 264.00| 1.91 10.73 75.51
Ours Npur; = 64, T=4/8 0.09 0.36 0.06 | 269.82 525.09 286.78 392.35 264.00 0.47 1.38 75.51
2% [44] T=1 ‘ 0.15 0.52 2.04 | 4752.34 — 121.23 2286.98 8576.00| 2.20 2.29 4145.00
NR-ECC Ours Npyy =64, T=1 0.15 0.52 2.04 | 4752.34 1988.81 961.48 1035.53 264.00 8.31 21.50 6801.49
Ours Npgre = 64, T=4/8 ‘ 0.15 0.52 2.04 | 4752.34 525.09 286.78 392.35 264.00| 2.94 4.68 6801.49
210

[44 T=1 1.26 5.39 21.56 | 269.82 — 121.23 2286.98 8576.00 0.63 1.22 2064.00
GC-LowMC Ours Npg =64, T =1 ‘ 1.26 5.39  21.56 | 269.82 1988.81 961.48 1035.53 264.00 | 6.75 20.43 4720.49
Ours Npge =64, T=4/8 1.26 5.39 21.56 | 269.82 525.09 286.78 392.35 264.00 1.37 3.61 4720.49

our PIR-based protocol, we achieve total communication costs of 272.68 MiB
for |DB| = 231, Npg+ = 64, and | X| = 2!0 (cf. Table 3). This is an improvement
by factor 32x compared to ~8 GiB in [43] at only marginally higher runtimes.

PIR-PSI [23] (Table4). We further compare our protocol implementation
with PIR-PSI based on the results in [23, Table 2]. The authors of [23] evaluate
their performance on a single server with two 18-core Intel Xeon E5-2699 CPUs
at 2.30 GHz, 156 GiB RAM, and simulated LAN setting with 10 GB/s bandwidth
and 0.02 ms RTT. In comparison, our results are obtained in our WiFi setting
using a mobile client and two virtual servers with fewer cores, i.e., 8 vs 18 per
machine, and less RAM. Our comparison in Table4 excludes the OPRF costs
of our protocol as these would also have to be applied to [23] to strengthen
their protocol’s non-collusion assumption. As server setup costs are not reported
in [23], we exclude them from this comparison.

We compare the runtimes for both protocols using a single (T=1) and multi-
ple threads (T=4/8) in Table 4. While PIR-PSI does not require an offline phase,
marked with “=”, our protocol has client-dependent one-time costs, which can be
amortized over all online queries. The DPF-PIR protocol [10,11] used in PIR-PSI
requires online computation linear in the database size, whereas OO-PIR [46]
in our protocol has sublinear complexity. For |DB| = 228 our implementation’s
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Table 4. Comparison to PIR-PSI [23]. Results for PIR-PSI are from [23, Table 2] with
parameters block size b and 3 = ¢ - |DB|/log,(|DB|) bins, where c is a scaling factor.
The protocols are compared in a single- (T=1) and multi-threading (T=4/8) setting.
Best results in the online phase are marked in bold.

Parameters ‘ Offline ‘ Online
|DB| |X]| ‘Protocols Time [s] Comm. Time [s] Comm.
- psI Param. T=1 T=4/8 [MiB] | T=1 T=4/8 [kiB]
1\[23] c=1,b=32 - - -l 121 - 30.72
Ours Npu¢=32 32610 9897 66.00 0.77 0.33 34.74
228 \ 23] ¢=0.25b=1 - - ~133.02 13.22  5048.32

210\[23] c=4,b=16 - - —-| 407 160 28979.20
Ours  Npar: = 32 326.10 98.97 66.00 3.39 0.45 1952.25

online runtime is significantly faster for single- and multi-threading, especially
considering the hardware and network limitations in our setting. We expect the
benefit of our protocol’s low online costs to become even more visible for larger
database sizes (|DB| = 231), for which PIR-PSI does not report results.

FHE-based PSI [15]. The authors of [15] consider their protocol for the use
case of mobile private contact discovery and acknowledge increasing hardware
requirements for large-scale database sizes. Based on their recommendation to
partition the database, as done in our work, their protocol has 76.2 MiB online
communication for |[DB| = 23!, |X| = 2% Our protocol requires 16.5x less
online communication — only 4.61 MiB per online phase — but has additional
one-time offline costs, which amortize over many queries. Based on [15, Tab. 2],
the runtimes for a single partition of size 228 with T=24 threads are 2487 s offline
and 4.54s online, which is significantly higher than those of our work. These
additional costs, and the lack of a mobile implementation, currently hinder the
use of FHE-based protocols for mobile private contact discovery.

6 Conclusion

In this work, we proposed a new communication-efficient unbalanced PSI pro-
tocol by combining and further optimizing OPRF-based unbalanced PSI [43]
with two-server PIR [46]. With this, we take big steps towards practicality
of large-scale mobile private contact discovery. While our protocol achieves a
significant reduction in communication and thus outperforms the state-of-the-
art protocol mobile private contact discovery [43] in this regard, the client-
dependent setup and update costs are still limiting factors for real-world prac-
ticality with large-scale messengers. Continuing research on PIR protocols with
client-independent preprocessing is thus a crucial area of future work.
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Appendix

A PIR Survey

In Table5, we summarize our survey of recent PIR protocols for their use
in OPRF-based PSI based on which we selected the OO-PIR by Kogan
and Corrigan-Gibbs [46].

Table 5. Surveyed PIR protocols for OPRF-based PSI. Complexities are simplified.
We distinguish between client C’s and server(s) S’s computational costs where possible.
Table entries are left empty when complexities are not clear from the original paper or
related work.

| .
‘ E % :? § Offline Online
e 9] o o
‘ E‘ § ;ﬂ:s E % Comp. Comm. Comp. Comm.
2 & 9 s 2
n | Protocol ‘ & g 5 & & c s c s
SealPIR [3] RLWE v i | @ = N = N an1/d
MulPIR [2] ‘ RLWE v X v v N anl/d
[55] RLWE i x v v - N - B/pNYd BNY %/
Spiral (family) [53] ‘ RLWE 4 X 4 4 N log N
PIRANA [50] RLWE v i 7| 7 = N N/M  N/M N/M
[18] ‘ LWE v X X X VN N VN VN VN
1 | OnionPIR [54] RLWE v i | 7| 7 N N N N N
[48] ‘ LWE vt X X X N N N VN VN VN
[75] LWE i X v X N VN VN VN 1
[17] ‘ RLWE /T X v X N N N N N N
SimplePIR [37] we vt o+ v v | NM N VN N VN
DoublePIR [37] ‘ wwe it o, s v N a2 vN
FrodoPIR [22] we vt o s v N N 1 N 1 N
DPF-PIR [10] ‘ OWF x VA - - - log N N nlog N
CIP-PIR [31] owr i s s v - N - VN/n N/n ny/N/n
[18] ‘ owr st X x X VN N VN VN VN nlog N
2+ | [46] owr vt Y o+ | VN N VN VN VN nlog N
[68] ‘ LWE i X v X vVN N VN VN VN nlog N
iCK [51] owr I /I v | VN N VN VN VN nvVN
iSACM [51] ‘ LWE AR VA VN N VN VN VN nvVN

Database size N, number of servers n, plaintext size p, lattice dimension d;, database
hypercube dimension d, encryption parameter M, number of buckets B and bucket
size N, ! Stateful / offline-online, ¥ client-independent, ¥ waterfall updates, !l in-place
edits, * includes mobile implementation.
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