
Revisiting Hybrid Private Information Retrieval
Daniel Günther

guenther@encrypto.cs.tu-
darmstadt.de

Technical University of Darmstadt
Darmstadt, Germany

Thomas Schneider
schneider@encrypto.cs.tu-

darmstadt.de
Technical University of Darmstadt

Darmstadt, Germany

Felix Wiegand
felix-wiegand@protonmail.ch

Technical University of Darmstadt
Darmstadt, Germany

ABSTRACT
Private Information Retrieval (PIR) allows a client to request entries
from a public database held by 𝑘 servers without revealing any
information about the requested data to the servers. PIR is classified
into two classes: (i) Multi-server PIR protocols where the request is
split among 𝑘 ≥ 2 non-colluding servers, and (ii) Single-server PIR
protocols where exactly 𝑘 = 1 server holds the database while the
query is protected via certain computational hardness assumptions.

Devet & Goldberg (PETS ’14) showed that both can be combined
into one recursive PIR protocol in order to improve the communi-
cation complexity. Their hybrid PIR protocol is instantiated with
the multi-server PIR protocol of Goldberg (S&P’07) and the single-
server PIR protocol by Melchar & Gaborit (WEWoRC’07), resulting
in online request runtime speedups and guaranteeing at least partial
privacy if the multi-server PIR servers do in fact collude.

In this work we show that the hybrid PIR protocol by Devet &
Goldberg still has practical relevance by designing a hybrid ap-
proach using the state-of-the-artmulti-server protocol CIP-PIR (Gün-
ther et al., ePrint ’21/823) and the single-server protocol SealPIR (An-
gel et al., S&P ’18). Our novel hybrid PIR protocol massively im-
proves the linear communication complexity of CIP-PIR and obtains
the strong property of client-independent preprocessing, which al-
low batch-preprocessing among multiple clients without the clients
being involved. We implement and benchmark our protocol and
get speedups of ≈ 4.36× over the original implementation of De-
vet & Goldberg (8GiB DB), speedups of ≈ 26.08× (8GiB DB) over
CIP-PIR, and speedups of ≈ 11.16× over SealPIR (1GiB DB).

CCS CONCEPTS
• Security andprivacy→Privacy-preserving protocols; •Com-
puting methodologies→ Distributed algorithms; • Informa-
tion systems → Information retrieval query processing.

KEYWORDS
Private Information Retrieval, Large-Scale Applications

ACM Reference Format:
Daniel Günther, Thomas Schneider, and Felix Wiegand. 2021. Revisiting
Hybrid Private Information Retrieval. In Proceedings of the 2021 ACM SIGSAC
Conference on Computer and Communications Security (CCS ’21), November

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea
© 2021 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-8454-4/21/11.
https://doi.org/10.1145/3460120.3485346

15–19, 2021, Virtual Event, Republic of Korea. ACM, New York, NY, USA,
3 pages. https://doi.org/10.1145/3460120.3485346

1 INTRODUCTION
Private Information Retrieval (PIR) [4] allows requesting a database
element 𝐷𝐵 [𝑖0] from a database 𝐷𝐵 consisting of 𝑛 elements held
by 𝑘 servers without leaking 𝑖0 or 𝐷𝐵 [𝑖0] to the server(s). Multi-
server PIR [5, 10, 11] provide this guarantee by splitting the client’s
request among 𝑘 ≥ 2 servers from which a subset of 𝑡 ≤ 𝑘 servers
are assumed to be non-colluding. In contrast, single-server PIR pro-
tocols [2, 15] instead rely on cryptographic hardness assumptions,
e.g., by utilizing homomorphic encryption. However, single-server
PIR protocols are comparatively very inefficient as expensive cryp-
tographic operations over the complete database are necessary,
while the multi-server PIR protocols just need to compute very
cheap operations (e.g., XOR) and thus are more efficient.

In hybrid PIR as proposed by Devet & Goldberg [7], both ap-
proaches are combined in a recursive protocol, where the multi-
server PIR part selects a subset of the database on which single-
server PIR is performed. This solution improves the linear commu-
nication complexity of the multi-server PIR part, limits the compu-
tational overhead of the single-server PIR protocol, and provides
partial privacy in case of server collusion as only a subset of possi-
ble requested database elements is leaked. Especially in large-scale
applications, where a single-server solution has too much compu-
tation overhead, and users may not trust the servers not to collude,
a hybrid protocol can be a useful compromise. Since Devet & Gold-
berg [7] designed and evaluated their hybrid PIR protocol in 2014,
more efficient PIR protocols have been published.

The multi-server protocol CIP-PIR [11] moves the majority of
the server’s online computation into a client-independent offline
phase that can be efficiently batch-processed. The single-server
protocol SealPIR [2] allows querying the database with a number of
ciphertexts constant in the number of database elements, reducing
the communication required.

PIR applications. Prominent PIR applications include patent data-
base look-ups [3], anonymous messaging [6], private inquiries into
browser blocklists [14], and Certificate Transparency databases [13].
Recently, PIR was used in the context of Privacy-Preserving Epi-
demiological Modelling (PEM) [12] as an effective measure against
the COVID-19 pandemic. This framework allows performing dis-
tributed epidemiological simulations in a privacy-friendly way,
using real world data collected by mobile tracking applications.

Contributions. In this work, we show that Devet & Goldberg’s [7]
hybrid PIR protocol from 2014 still has practical relevance by in-
stantiating this hybrid protocol with the multi-server PIR protocol

Session 8: Poster & Demo Session CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

2408

https://doi.org/10.1145/3460120.3485346
https://doi.org/10.1145/3460120.3485346
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3460120.3485346&domain=pdf&date_stamp=2021-11-13

CIP-PIR [11] and the single-server PIR protocol SealPIR [2]. We im-
plement the resulting protocol in Rust and measure its performance
for very large databases, especially with small element sizes, and
compare it to Devet & Goldberg’s original implementation, as well
as pure CIP-PIR and SealPIR.

2 PIR PROTOCOLS

CIP-PIR [11]. CIP-PIR by Günther et al. [11] is a multi-server PIR
scheme that involves 𝑘 servers from which 2 ≤ 𝑡 ≤ 𝑘 are assumed
to be non-colluding. It is the first PIR protocol that can perform a
preprocessing phase completely independent of the client and thus
reduces the server’s online computation time by factor 𝑘 − 1/𝑘 over
the traditional multi-server schemes [5, 6] building up on Chor et
al.’s PIR [4] and PIR based on distributed point functions [9, 13].

The core idea of Chor et al.’s PIR [4] works as follows: Let us
assume the client aims to retrieve the data block 𝑖0 from a data-
base𝐷𝐵 of 𝑛 blocks. Then, the client generates an 𝑛 bit zero string 𝑞
with a ‘1’ at position 𝑖0. The client generates 𝑘 − 1 random 𝑛-bit
strings 𝑞1, . . . , 𝑞𝑘−1 and computes the so-called flip query 𝑞𝑛 =

𝑞
⊕𝑘−1

𝑖=1 𝑞𝑖 and sends 𝑞𝑖 to server 𝑖 . The servers then compute the
answer of the query as 𝑎𝑖 =

⊕𝑛
𝑗=1 𝑞𝑖 [𝑗] · 𝐷𝐵 [𝑗] and finally, the

client computes 𝐷𝐵 [𝑖0] =
⊕𝑘

𝑖=1 𝑎𝑖 .
RAID-PIR by Demmler et al. [5, 6] improves over Chor et al.’s

PIR [4] by splitting the database into 𝑘 chunks and the flip query,
which cancels out all unwanted bits from the random queries, is
spread among all 𝑘 servers s.t. each server holds the flip query
part of exactly one chunk. In addition, the random parts of the
queries are derived from a seed via a pseudorandom generator PRG.
Consequently, the client then only needs to send to each server the
flip chunk query and a ^ bit seed, where ^ is the security parameter.

CIP-PIR [11] goes one step further and lets the servers choose
the seeds in order to precompute the random parts of the query
in an offline phase. Since there is no information from the client
needed, the servers can precompute 𝑘 − 1/𝑘 of the answer and even
can do this for many clients in parallel, which allows for massive
parallelization, e.g., on a GPU, and batch processing.

Günther et al. [11] showed that CIP-PIR outperforms all state-of-
the-art PIR implementations for databases up to 16 TB including PIR
based on distributed point functions [9, 13], which are well-known
for their logarithmic communication complexity, while CIP-PIR
has linear communication complexity. However, it turned out that
the online computation time is the bottleneck of multi-server PIR,
which CIP-PIR massively improves.

SealPIR [2] The base for SealPIR is the single-server PIR protocol
XPIR by Aguilar-Melchor et al. [1], which uses lattice-based homo-
morphic encryption. SealPIR by Angel et al. [2] improves over XPIR
by focussing on compressing the query to reduce network costs.

At its core, SealPIR – like XPIR – is a traditional single-server
PIR protocol relying on additively homomorphic encryption, where
the query consists of an encrypted ‘1’ for the desired element and
an encrypted ‘0’ for every other one. The server multiplies each
query element with the corresponding database element and sums
the results together. The client then simply decrypts the result to
obtain the desired element.

Since a full query consisting of a ciphertext for every database
element is very large, SealPIR introduces a feature called query
expansion. In the FV cryptosystem [8] employed by SealPIR, both
plain and ciphertexts are polynomials of degree𝑁 . Query expansion
allows indexing 𝑁 elements with a single ciphertext. To index
more elements, SealPIR arranges the database as a 𝑑-dimensional
hypercube, and uses 𝑑 ciphertexts per query to index 𝑁𝑑 elements.

3 OUR HYBRID PROTOCOL
Devet & Goldberg [7] proposed a hybrid PIR protocol that com-
bines multi-server PIR with single-server PIR in order to reduce
the communication complexity of PIR protocols. Their framework
is very modular and can be instantiated with any multi-server and
single-server PIR scheme. The database 𝐷𝐵 is split into multiple
sub-databases from which the sub-database, in which the client’s
requested element 𝐷𝐵 [𝑖0] is included, is retrieved via multi-server
PIR. Then, the servers use a single-server PIR protocol to retrieve
the concrete queried element from the sub-database.

The original protocol uses Goldberg’s [10] multi-server PIR pro-
tocol and the single-server PIR protocol by Melchar & Gaborit [15].
In our hybrid protocol, we instantiate the Devet & Goldberg ap-
proach with the multi-server protocol CIP-PIR [11] and the single-
server protocol SealPIR [2]. The SealPIR protocol uses very efficient
query compression techniques which massively reduces the com-
munication costs of single-server PIR.

As described in section 2, CIP-PIR ist the first multi-server PIR
protocol that moves a majority of the online work to an offline
phase that is completely independent of the client. We can apply
this novel trick for our hybrid PIR as well and get a new PIR protocol
in the Client-Independent Preprocessing PIR model introduced by
Günther et al. [11].

We implement our hybrid protocol in Rust1, reimplement CIP-
PIR to facilitate its integration into our hybrid protocol2, and use
the existing Rust bindings for SealPIR.3

4 EVALUATION

Experimental Setting. We perform a variety of benchmarks to
compare our new hybrid PIR protocol with Devet & Goldberg’s orig-
inal implementation [7], as well as pure CIP-PIR [11] and SealPIR [2].
These benchmarks were performed on Core i9-7960X CPUs, with
128GiB of RAM, and a simulated 100Mbit/s connection.

We measure the total online runtime – the time between a client
starting the request and finishing decoding the response – for a vari-
ety of database sizes and shapes, with 𝑘 = 2 servers. All benchmarks
are averages over 50 iterations.

Online runtime for different numbers of database elements.
Figure 1a shows the total online runtime for increasing numbers
of small (𝑠 = 32 bit) elements. While our new hybrid PIR proto-
col performs the worst for very small numbers of elements due
to the overhead of a recursive protocol and the constant SealPIR
query size, it outperforms Devet & Goldberg’s original construction
for 𝑛 ≥ 220 elements, and all other tested protocols for 𝑛 ≥ 226.

1https://encrypto.de/code/HybridPIR
2https://encrypto.de/code/CIP-PIR-Rust
3https://github.com/pung-project/sealpir-rust

Session 8: Poster & Demo Session CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

2409

https://encrypto.de/code/HybridPIR
https://encrypto.de/code/CIP-PIR-Rust
https://github.com/pung-project/sealpir-rust

210 212 214 216 218 220 222 224 226 228
101

102

103

104

105

Number of Database Elements 𝑛

T o
ta
lO

nl
in
e
Ru

nt
im

e
[m

s]

SealPIR [2]
CIP-PIR [our impl.]
Original HybridPIR [7]
HybridPIR [this work]

(a)

210 212 214 216 218 220 222
101

102

103

104

105

Number of Database Elements 𝑛

SealPIR [2]
CIP-PIR [11]
CIP-PIR [our impl.]
Original HybridPIR [7]
HybridPIR [this work]

(b)

25 27 29 211 213 215 217 219 221 223
102

103

104

105

106

Element Size 𝑠

CIP-PIR [our impl.]
Original HybridPIR [7]
HybridPIR [this work] (𝑏 = 2048)
HybridPIR [this work] (𝑏 = 512)
HybridPIR [this work] (𝑏 = 128)
HybridPIR [this work] (𝑏 = 32)

(c)

Figure 1: (a) and (b) show the total online runtime for increasing numbers of database elements for 32 and 213 bit elements,
respectively. (c) shows the total online runtime for differently shaped databases with a constant size of 8GiB (𝑛 · 𝑠 = 236). For
HybridPIR, different numbers of elements per block 𝑏 were used.

At 𝑛 = 228 elements, our hybrid construction achieves speedups
of ≈ 11.16× over SealPIR, ≈ 5.68× over CIP-PIR, and ≈ 2.82× over
Devet & Goldberg’s hybrid protocol. While our hybrid PIR con-
struction needs to XOR the same amount of data as pure CIP-PIR,
the larger CIP-PIR blocks of our hybrid construction make up for
the additional SealPIR overhead with smaller queries and better
vectorization.

Figure 1b shows the total online runtime for larger (𝑠 = 213 bit)
elements. SealPIR benchmarks could not be completed for 𝑛 > 214
due to memory limitations. While our new hybrid construction out-
performs the original one for 𝑛 ≥ 220, it fails to outperform CIP-PIR
for any of the benchmark values of 𝑛. Benchmarks for more ele-
ments could not be completed due to memory limitations. Further,
we see that our Rust implementation of CIP-PIR performs almost
equally as well as the C++ implementation by Günther et al. [11].

Online runtime for different database shapes and block sizes.
Figure 1c shows the total online runtime for differently shaped
databases of size 8GiB. Benchmarks for SealPIR could not be per-
formed for a databases of this size. Unlike the hybrid protocols,
CIP-PIR is highly sensitive to the shape of the database. Our hy-
brid construction achieves a speedup of ≈ 26.08× over CIP-PIR
for 32 bit elements, and a speedup of ≈ 4.36× over the original
hybrid PIR construction for 128 bit elements. The performance of
CIP-PIR is optimized for element sizes super-linear in the database
size as the communication complexity is minimized. We see the
same behaviour in our benchmarks and conclude that our hybrid
PIR outperforms CIP-PIR for databases consisting of small entries,
while CIP-PIR performs better for applications with large database
entries like compromised credential checking [11]. The larger CIP-
PIR blocks of our hybrid construction allow us to take advantage of
the best CIP-PIR performance despite smaller database elements.

ACKNOWLEDGEMENTS
This project received funding from the European Research Coun-
cil (ERC) under the European Union’s Horizon 2020 research and

innovation program (grant agreement No. 850990 PSOTI). It was co-
funded by the Deutsche Forschungsgemeinschaft (DFG) — SFB 1119
CROSSING/236615297 and GRK 2050 Privacy Trust/251805230, and
by the German Federal Ministry of Education and Research and the
Hessen State Ministry for Higher Education, Research and the Arts
within ATHENE.

REFERENCES
[1] Carlos Aguilar-Melchor, Joris Barrier, Laurent Fousse, and Marc-Olivier Killijian.

2016. XPIR : Private Information Retrieval for Everyone. In PETs. Springer.
[2] Sebastian Angel, Hao Chen, Kim Laine, and Srinath Setty. 2018. PIR with Com-

pressed Queries and Amortized Query Processing. In S&P. IEEE.
[3] Dmitri Asonov. 2004. Querying Databases Privately: A New Approach to Private

Information Retrieval. Springer.
[4] B. Chor, O. Goldreich, E. Kushilevitz, and M. Sudan. 1995. Private Information

Retrieval. In FOCS. IEEE.
[5] Daniel Demmler, Amir Herzberg, and Thomas Schneider. 2014. RAID-PIR: Prac-

tical Multi-Server PIR. In CCSW. ACM.
[6] Daniel Demmler, Marco Holz, and Thomas Schneider. 2017. OnionPIR: Effective

Protection of Sensitive Metadata in Online Communication Networks. In ACNS.
Springer.

[7] Casey Devet and Ian Goldberg. 2014. The Best of Both Worlds: Combining
Information-Theoretic and Computational PIR for Communication Efficiency. In
PETs. Springer.

[8] Junfeng Fan and Frederik Vercauteren. 2012. Somewhat Practical Fully Homo-
morphic Encryption. ePrint’2012/144. (2012). https://eprint.iacr.org/2012/144.

[9] Niv Gilboa and Yuval Ishai. 2014. Distributed Point Functions and Their Applica-
tions. In EUROCRYPT. Springer.

[10] Ian Goldberg. 2007. Improving the Robustness of Private Information Retrieval.
In S&P. IEEE.

[11] Daniel Günther, Maurice Heymann, Benny Pinkas, and Thomas Schneider. 2021.
GPU-accelerated PIR with Client-Independent Preprocessing for Large-Scale
Applications. ePrint’2021/823. (2021). https://eprint.iacr.org/2021/823.

[12] Daniel Günther, MarcoHolz, Benjamin Judkewitz, HelenMöllering, Benny Pinkas,
and Thomas Schneider. 2020. PEM: Privacy-preserving Epidemiological Modeling.
ePrint’2020/1546. (2020). https://eprint.iacr.org/2020/1546.

[13] Daniel Kales, Olamide Omolola, and Sebastian Ramacher. 2019. Revisiting User
Privacy for Certificate Transparency. In S&P. IEEE.

[14] Dmitry Kogan and Henry Corrigan-Gibbs. 2021. Private Blocklist Lookups with
Checklist. In USENIX Security. USENIX.

[15] Carlos Aguilar Melchor and Philippe Gaborit. 2007. A Lattice-Based
Computationally-Efficient Private Information Retrieval Protocol.
ePrint’2007/446. (2007). https://eprint.iacr.org/2007/446.

Session 8: Poster & Demo Session CCS ’21, November 15–19, 2021, Virtual Event, Republic of Korea

2410

https://eprint.iacr.org/2012/144
https://eprint.iacr.org/2021/823
https://eprint.iacr.org/2020/1546
https://eprint.iacr.org/2007/446

	Abstract
	1 Introduction
	2 PIR Protocols
	3 Our Hybrid Protocol
	4 Evaluation
	References

