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Abstract. Emails have improved our workplace efficiency and com-
munication. However, they are often processed unencrypted by mail
servers, leaving them open to data breaches on a single service provider.
Public-key based solutions for end-to-end secured email, such as Pretty
Good Privacy (PGP) and Secure/Multipurpose Internet Mail Extensions
(S/MIME), are available but are not widely adopted due to usability
obstacles and also hinder processing of encrypted emails.

We propose PrivMail, a novel approach to secure emails using secret
sharing methods. Our framework utilizes Secure Multi-Party Compu-
tation techniques to relay emails through multiple service providers,
thereby preventing any of them from accessing the content in plaintext.
Additionally, PrivMail supports private server-side email processing sim-
ilar to IMAP SEARCH, and eliminates the need for cryptographic cer-
tificates, resulting in better usability than public-key based solutions. An
important aspect of our framework is its capability to enable third-party
searches on user emails while maintaining the privacy of both the email
and the query used to conduct the search.

To evaluate our solution, we benchmarked transfer and search opera-
tions using the Enron Email Dataset and demonstrate that PrivMail is
an effective solution for enhancing email security.

Keywords: Private Email · Secret Sharing · Private Keyword Search ·
Secure Two-party Computation · Private Information Retrieval

1 Introduction

Despite the widespread use of social media, text messages, and online messaging
services such as WhatsApp, Signal, and Telegram, electronic mail (email) is still a
popular method of communication, and it has a growing user base. In 2020, there
were roughly 4 billion users of email; by 2024, it is predicted that there would be
nearly 4.5 billion users, with an annual growth rate of 3% [21,23]. The majority
of email users are corporate companies and small businesses. For instance, 81%
of small businesses rely on email as their primary customer acquisition channel,
and 80% for retention [17].
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As the use of emails has grown in popularity, it has also caught the attention
of attackers who endanger security and privacy. One significant issue is related to
data breaches, in which email servers are frequently targeted [45]. Attackers may
publicly release the breached data or attempt to profit by selling or negotiating
with the email service provider [19,43]. For example, the ‘Collection #1’ breach
revealed 2.7 billion identification records with 773 million emails and made the
data available for sale online [55]. Data breaches also threaten the economy sig-
nificantly, with the average cost of a breach increasing by 15% from 2020 to 4.45
million USD in 2023 [28]. Another concern is the privacy of email content from
the Service Provider (SP). Often, emails are processed without encryption by
mail servers or are encrypted by the SP, requiring users to trust them completely.
However, with the growing concern for individual privacy and the implementa-
tion of privacy laws like the EU General Data Protection Regulation (GDPR)
and California Consumer Privacy Act (CCPA) [53], many users hesitate to use
email for communicating sensitive information.

The aforementioned concerns led to the emergence of service providers such
as ProtonMail [56] and Tutanota [58], who developed solutions for private emails
using End-to-End Encryption (E2EE) techniques. These techniques addressed
privacy issues regarding the SP, while also allowing the users to perform search
on emails. However, they pose other limitations, for example, only the user can
perform the search [38,59]. Furthermore, solutions such as E2EE, which keep the
email content hidden from the SP, may not be enough in some situations and
require other options. To better illustrate these concerns, we will use a company’s
email system as an example and provide more information below.

Example Use Case—Company Email System. Consider PrivCorp, a com-
pany that wants to establish an email infrastructure for its employees while
upholding individual data privacy. PrivCorp is concerned about the potential
impact of data breaches, which have recently hit a number of enterprises. Fur-
thermore, unlike some companies that monitor employee emails with or without
their consent based on legal jurisdiction, PrivCorp is committed to implement-
ing email monitoring in a privacy-preserving manner. In summary, PrivCorp’s
email infrastructure development goals include:

1. Privacy from SP: The email content1 should be hidden from the SP. To
achieve the desired goal, the company is willing to use multiple SPs, if needed.

2. Data breach protection: The email should remain private even if all but one
of the SPs are compromised.

3. Spam filtering: The company should be able to analyse external emails and
perform spam filtering in a privacy-preserving manner to respect the privacy
of the email content.

4. Unintended data leakage prevention: The company should be able to monitor
emails from its employees to the outside world in a privacy-preserving manner
for accidental data leaks or other content that violates company policies such
as defamation against the company, character assaults, and abusive content.

1 Mostly the subject and content fields but not other meta data.
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To address goals (1) and (2) above, a simple approach is to use E2EE meth-
ods, like PGP [5] and S/MIME [50], in which emails are encrypted and signed
by the sender using public-key cryptography and decrypted and verified by the
receiver. However, the strong privacy guarantees of E2EE make achieving goals
(3) and (4) extremely difficult, as both require some sort of processing over the
encrypted email content by an external entity.

While techniques like Searchable Symmetric Encryption (SSE) [54] enable
encrypted data search, their utility is limited due to: 1) the need for email sender
and receiver to manage keys for search, restricting search access to these parties,
and 2) practical SSE methods having limitations in terms of information leakage,
which can compromise the privacy of the encrypted data [24,31,42]. Additionally,
SSE doesn’t align with our use-case as it lacks support for external agent search,
a requirement for goal (4).

To achieve the aforementioned goals simultaneously and efficiently, we com-
bine Secure Multi-Party Computation (MPC) [7,22] and Private Information
Retrieval (PIR) [12,16] techniques.

Overview of Our Solution. At a high level, the idea behind PrivMail is to use
multiple email Service Providers (SPs) and secret sharing techniques to ensure
that no individual SP sees the email content in the clear. Our idea was inspired by
the observation that most people already have multiple email accounts for varied
purposes such as personal and professional correspondence, with the average user
having 1.75 email accounts [23,60].

In our approach, rather than encrypting emails with cryptographic keys,
we secret share them (both subject and content) between multiple SPs using
MPC techniques. For example, if PrivCorp uses two SPs, say gmail.com and
outlook.com, then each employee with id empid is assigned two email addresses,
e.g., empid@gmail.com and empid@outlook.com. The sender splits the email
content into secret shares, sending each via regular email to one of two addresses.
The employee retrieves and locally combines these shares to access the content.
We provide additional optimizations ensuring that the total communication is
the same as a single unencrypted email. With this approach, the users are only
required to exchange email addresses except some simple splitting and recon-
struction operations (cf. Sect. 3). In contrast to exchanging cryptographic keys
or certificates needed with PGP and S/MIME [23,60], such email addresses can
be easily shared by the users (e.g., by writing on business cards or websites).

Besides providing privacy from the SP through secret sharing, our approach
allows private server-side processing/search using MPC. However, we cannot
guarantee privacy in case of a government agency forcing access to all servers.
In this scenario, the best solution is to select the servers that are from different
jurisdictions such that at least one of the servers is very hard to compromize.

Our Contributions. We propose PrivMail, a privacy-preserving system for
emails. PrivMail provides a secure way to transfer and store emails with-
out requiring to use keys or certificates. Our main idea is to secret share
emails between multiple (non-colluding) mail servers (e.g., Gmail, Outlook, etc.),
thereby keeping the data on each server private. Our approach has the advan-
tage that privately sending and receiving emails can directly run on the existing
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email infrastructure without server-side modifications. PrivMail offers resilience
against data breaches since the attacker must breach all of the email service
providers involved in order to obtain any useful information. Furthermore, it
reduces the usability issues that have been observed for schemes such as PGP
and S/MIME [23,60].

A key feature of PrivMail is its support for privacy-preserving server-side pro-
cessing on secret shared emails. We propose privacy-preserving drop-in replace-
ments for the standard Internet Message Access Protocol (IMAP) SEARCH and
FETCH commands, allowing a search agent to securely and efficiently search
for keyword(s) over secret shared emails and retrieve the results. Our scheme
combines techniques from Secure Multi-Party Computation (MPC) and Private
Information Retrieval (PIR) while avoiding leakages and the key management
required by schemes like Searchable Symmetric Encryption (SSE) [24,31,42].

We also simulate Simple Mail Transfer Protocol (SMTP) servers and run
extensive benchmarks on private keyword search over the Enron Email Dataset
[34]. We are able to demonstrate practical performance, which can encourage
real-world email service providers to incorporate PrivMail’s private search func-
tionalities into their existing feature set. To summarize:

1. We propose PrivMail, a privacy-preserving framework for emails that
enhances usability and data breach resilience without needing keys or cer-
tificates.

2. PrivMail offers privacy-preserving server-side processing on secret shared
emails, facilitating private searches and retrieval while avoiding key manage-
ment issues and leakages. We also propose multiple efficient keyword search
techniques, utilizing specific properties of email text and language.

3. We published an open-source prototype implementation of PrivMail2 and
demonstrate its practicality via benchmarks on private keyword searches on
the Enron Email Dataset [34].

2 Preliminaries

The generic design of PrivMail allows to seamlessly use any MPC protocol for
secure computation. However, in this work, we focus on the well-explored setting
with two servers (n = 2), and the scheme is explained using this setting in the
majority of the sections. PrivMail comprises of four entities: the sender (S) and
receiver (R) of an email, a collection of MPC servers, and a search agent (A).

Threat Model. All entities in PrivMail are considered to be semi-honest. The
two MPC servers are assumed to be non-colluding. This is justifiable given that
the MPC servers in our case are well-established email service providers such as
Gmail and Outlook. Because their reputation is at stake, these service providers
have strong incentives to follow the protocol and not conspire with other service
providers to leak their information. They could even operate in different countries

2 https://encrypto.de/code/PrivMail.

https://encrypto.de/code/PrivMail
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with different legislations. Such setup of non-colluding servers have already been
deployed in the real-world for services such as Firefox telemetry [8], privacy-
preserving machine learning [29], cryptocurrency wallets [18,52], and COVID-19
exposure notification analytics [4]. The search agent A will be either the email
sender or receiver, or a pre-consented third party (for instance, in the use-case
mentioned in Sect. 1, the company PrivCorp’s email filtering service) and is
expected to semi-honestly follow the protocol specifications.

Notations. We use the following logical gates: XOR (⊕), AND (∧), OR (∨),
and NOT (¬). Since XOR and NOT gates can be evaluated locally in Secret
Sharing (SS)-based MPC, an OR gate can be realised at the cost (communica-
tion) of an AND gate as a ∨ b = ¬(¬a ∧ ¬b). Given a set of m bits b1, . . . , bm,
m∧
i=1

bi = b1 ∧ b2 ∧ · · · ∧ bm represents the cumulative AND and the

other logic operators follow similarly. When performing boolean operations with
a single bit b and a binary string v ∈ {0, 1}ℓ, we assume that the same bit b is
used to perform the operation with each bit in the string v.

The values in PrivMail are secret shared between the two MPC servers via
boolean sharing [22]: For a secret x, the i-th server, for i ∈ {1, 2}, holds the share
⟨x⟩i such that x = ⟨x⟩1 ⊕ ⟨x⟩2. We sometimes abbreviate the notation and use xi
instead of ⟨x⟩i for the sake of brevity.

Existing Email Architecture. In a standard email communication, the
sender S sends a message to the receiver R via a Mail User Agent (MUA)
such as Thunderbird as follows. First, the MUA converts the message to email
format and sends it to a Mail Transfer Agent (MTA). Upon receiving the email,
the MTA transmits it to the receiver’s Mail Delivery Agent (MDA) via the Sim-
ple Mail Transfer Protocol (SMTP). Finally, the MDA delivers the mail to R’s
mailbox. We leave out low-level details such as domain validation and refer to
[33] for specifics.

On the receiver’s side, R uses the Internet Message Access Protocol (IMAP)
[13] to retrieve the email from the receiving server.3 In more detail, the two
functionalities IMAP SEARCH [13, §6.4.4] and FETCH [13, §6.4.5] are used to
accomplish this. SEARCH provides a comprehensive search interface similar to
the Structured Query Language (SQL). FETCH retrieves all the emails from the
mail server returned by the SEARCH functionality.

3 PrivMail Architecture

In this section, we specify the architecture of PrivMail. In PrivMail, the sender
and the receiver can choose their own independent set of Service Providers (SPs)
whom they trust to not collude. W.l.o.g., we first explain our architecture assum-
ing that both the sender and the receiver are registered with two distinct SPs
3 The older Post Office Protocol (POP) downloads the email from the server and
optionally deletes it from the server, but in contrast to IMAP provides no server-
side search.
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each. In concrete terms, each SP owns an email path that connects the sender’s
Mail Transfer Agent (MTA) to the receiver’s Mail Delivery Agent (MDA).

At a high level, the sender S splits the original mail (Subject, Body) into
two shares and sends them to receiver R via the two SPs, denoted by Priv-
Mail Servers (PMS). The SPs are not required to perform any additional work
to support our email transfer because the email shares are simply treated as
regular emails, thus standard SMTP servers are sufficient for this. The email is
retrieved by the receiver R by locally reconstructing the shares received from
the SPs. Unlike an end-to-end encrypted email system (like PGP or S/MIME),
this approach does not require either the sender or the receiver to handle any
cryptographic keys or certificates. This also eliminates the challenges associated
with implementing PGP or S/MIME in practice, where the users have to setup,
manage and exchange keys and certificates [48–50].

Security Guarantees: PrivMail guarantees confidentiality, integrity and correct-
ness. Confidentiality and correctness of PrivMail are ensured by the security of
the underlying MPC protocols, while its integrity is assured as the users and the
MPC servers are assumed to be semi-honest. To provide integrity of email trans-
fer even with malicious servers, an honest sender can simply append a salted
SHA256 hash of the email content together with the salt to each shared email.
When the email is reconstructed, the receiver can verify that it matches both
hashes/salts. This is secure as long as one of the servers is not corrupted and
the sender is honest. In the case of search with malicious servers (which we
leave as future work), the underlying MPC protocol is responsible for providing
integrity, which is typically achieved using authentication tags for protocols in
the dishonest-majority setting.

MUA

MTA1 MDA1

!Sender!Client
Proxy (SCP)

!Recipient!Client
Script (RCS) MUA

MTA2 MDA2=

Fig. 1. PrivMail Communication: 2 Server Case.

Two Server Case: Now, we explain the communication phase for the two
server case in more detail. As illustrated in Fig. 1, the first step is to split the
email E = (Subject, Body) into secret shares as per the underlying MPC proto-
col. The secret sharing can be done either at S’s Mail User Agent (MUA) using
a custom plug-in for mail clients like Thunderbird or Outlook, or using a Sender
Client Proxy (SCP) service between S’s MUA and MTAs. In this work, we use
the latter method as it is independent of the specific MUA. The email is shared
as boolean shares, i.e., E = E1 ⊕ E2 with E1 ∈R {0, 1}|E|.4 Each of the email
4 Later in Sect. 3.2 we describe an optimization to send a seed for a Pseudo Random
Function (PRF) instead of the whole share E1.
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shares are now treated as independent emails and are sent using the sender’s
respective mail accounts using the regular email procedure. Similar to the SCP,
we use a Recipient Client Script (RCS) at the receiver’s end to reconstruct the
original email from the shares.

3.1 Integration with the Existing Email Infrastructure

So far, we have assumed that each user sends and receives emails through a
fixed set of distinct SPs. This assumption, however, may take some time to be
adopted in practice, so we will now discuss how our scheme can be integrated
with the existing email infrastructure.

The basic goal is to provide a private alternative on top of the existing email
system such that the users can choose to communicate their emails either via
PrivMail or via the existing email system. Let the sender S be registered to NS
SPs and let PMSS be the set of these outgoing mail servers. Similarly, PMSR

denotes the set of incoming email servers of receiver R of size NR. Furthermore,
we assume that both S and R have chosen their respective PMS servers in such
a way that not all of the servers in their respective set will collude.

Näıve Approach: The näıve approach for integrating PrivMail to the existing
email infrastructure is by splitting the mail at the sender’s end into n = NS ·NR
shares using an n-out-of-n secret sharing scheme. Then each outgoing server
PMSSi will receive NR shares, one for each of the receiver’s NR servers. These
shares can then be sent to the corresponding receiver’s servers as regular mails.
This setting corresponds to having a path between each pair of PMSSi and PMSRj .

Before looking deeper into the security of this approach, we define the term
secure path in the context of email servers at the sender’s and recipient’s ends.

Definition 1. A path connecting outgoing mail server PMSSi ∈ PMSS and
incoming mail server PMSRj ∈ PMSR is said to be “secure” if neither PMSSi
nor PMSRj colludes with the other servers in the set PMSS ∪ PMSR. Here,
NS ,NR ≥ 2, where NS = |PMSS | and NR = |PMSR|.

Privacy: Let Nmin = min(NS ,NR). Considering the entire set of servers, i.e.,
PMSS ∪PMSR, the approach is secure as long as the adversary compromises no
more than Nmin −1 servers. This is due to the fact that in this case, there will be
at least one secure path (cf. Definition 1) from PMSS to PMSR, and one share out
of the NS ·NR shares will be communicated via this path. Because the adversary
has no knowledge of this share, the email content’s privacy is guaranteed due to
the privacy guarantee of the underlying n-out-of-n secret sharing scheme.

We observe that it is preferable to consider security at S’s and R’s ends
separately rather than combining them, since in real-world scenarios, the servers
in PMSS and PMSR may be from different legal jurisdictions. In such cases, the
number of servers at the clients side does not ensure additional security. As a
result of treating the servers separately, the scheme’s security is preserved at the
S’s (or R’s) end as long as not all servers in PMSS (or PMSR) are compromised.
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Note that the näıve approach requires a communication of NS · NR email
shares. We now present an optimized approach that reduces the communication
between PMSS and PMSR to max(NS ,NR) email shares.

Optimized Approach. In this method (Fig. 2), the sender splits the email
into Nmax = max(NS ,NR) shares as per the underlying MPC protocol. Without
loss of generality, consider the case where NS < NR and the other case follows
similarly. Once the email shares are generated, SCP at S’s end will compute a
mapping from the servers in PMSS to PMSR.

Fig. 2. Optimized Approach

If there are common servers, i.e., PMSS ∩
PMSR ̸= ∅, then a mapping is formed between
the corresponding servers for each server in the
intersection (e.g., in Fig. 2 Gmail server PMSS1 is
mapped to Gmail server PMSR1 ). The remaining
servers are then assigned a random mapping so
that each of the servers in PMSR receives exactly
one email share. When NS ≥ NR, the mapping
is s.t. each server in PMSS is assigned exactly
one email share, whereas servers at the receiver’s
end may receive multiple shares. More details on
applying our email sharing in practice are provided
in the full version [10, §4.1].

Privacy: Similar to the näıve approach, the privacy of the optimized approach
is ensured as long as there is at least one secure path between the servers at the
S’s and R’s ends, i.e., as long as an adversary corrupts a maximum of Nmin − 1
servers, this approach is secure.

3.2 Sharing Optimization Using PRF Keys

In the two approaches mentioned in Sect. 3.1, each share is of the same size as
the original mail. Therefore, the total communication required for sending a mail
of size |E| would be max(NS ,NR) · |E| for the optimized approach.

To further optimize the communication and storage, we can adopt techniques
similar to those used in multi-server PIR schemes [12,15,16], that also use n-
out-of-n secret sharing to split the PIR query. In these works, the query is
partitioned into several chunks. In line with this technique, we divide each mail
E into n chunks of size |E|/n each. Each chunk is then shared among the servers
PMSi using boolean sharing such that chunkj = flipj ⊕n

i=n,i ̸=j rnd
j
i , where flip

is a boolean share and rndji = PRG(keyi)[j], where keyi is a 128-bit symmetric
key. Server i then receives the tuple (flipi, keyi) as its share of the mail which
has size |E|/n + 128 bits. The mail can thus be reconstructed by concatenating
all the chunks together, i.e., chunk1∥chunk2∥ · · · ∥chunkn. For the correctness of
this sharing, we set the number of chunks n = max(NS ,NR). This reduces the
total communication of the optimized approach to |E|+max(NS ,NR) · 128 bits,
which is about the size of the original email.
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4 Private Queries Using MPC

The main advantage of PrivMail is that private server-side processing of the
mails is easily possible because the emails are secret shared among the servers.
This allows commonly used functions like keyword search to be implemented
using various MPC techniques. Furthermore, keyword searches can be utilised
for other functionalities, such as checking for data leakage in outgoing emails
or detecting spam in incoming emails. Given the ubiquituous usage of keyword
search in the existing email infrastructure, we present multiple private keyword
search techniques and discuss optimizations and extensions. Note that the search
agent A can be either of the email users, i.e., S or R, or a third party with prior
consent, e.g., a company mail service.

The discussion that follows assumes that the communication phase (cf.
Sect. 3) has been completed and that the email content has been secret shared
among the PrivMail servers (PMSs). Consider a mailbox containing p emails that
are secret shared among n non-colluding servers. Given a keyword K, the private
query phase proceeds using two sub-protocols: i) Private Search (FSearch) emu-
lating IMAP SEARCH and ii) Private Fetch (FFetch) emulating IMAP FETCH,
which are executed in the order detailed next.

1. The search agent A secret shares the keyword K among the n servers in
accordance with the underlying MPC protocol.

2. Upon receiving the shares of K, the servers initiate the FSearch functionality
that enables A to obtain a list of indices that corresponds to emails containing
the keyword. Concretely, A obtains a p-bit vector H ∈ {0, 1}p with H[i] = 1 if
the ith email contains K and 0 otherwise. We instantiate FSearch using different
techniques in Sect. 4.2.

3. A and the n servers jointly execute FFetch (cf. Sect. 4.3) to privately fetch each
email from the mailbox. We efficiently instantiate FFetch using an extension
of 2-server PIR to a secret shared database (cf. Sect. 4.3).

To summarize, FSearch and FFetch provide a privacy-preserving drop-in
replacement for the standard Internet Message Access Protocol (IMAP) [13]
functionalities SEARCH and FETCH respectively. Similar to IMAP SEARCH,
PrivMail also supports combining multiple keyword searches for comprehensive
filtering of the emails by privately applying boolean operations on the output
vectors H. In the following we concentrate on single keyword searches.

4.1 Private Search FSearch

Recall from Sect. 3 that our basic approach secret shares the email’s subject
and body fields in their original form. One disadvantage of this strategy is that
the private search becomes case-sensitive. Working over the actual shares with
MPC incurs additional computation and communication to provide a solution
similar to the standard IMAP SEARCH, which is case-insensitive. A simple way
to avoid this overhead is to let the sender S secret share a lowercase version
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of the email as well which doubles the size of the email. The FSearch function
will then be performed over these shares, and the actual shares will be used to
reconstruct the original email (in FFetch). The search’s efficiency can be further
improved by employing a special encoding described next.

Special Encoding: We define our own special 6-bit character encoding without
losing much information for standard emails in English text that use 7-bit ASCII
character encoding, similar to the SixBit ASCII code by AIS [47]. The encoding
space is sufficient for all the lowercase alphabets and numbers (0–9) along with
28 special characters.For this, we omit all ASCII control characters as well as a
small set of special characters that are uncommon for a keyword. We call this 6-
bit encoded email a compact email from now on. As shown later in Sect. 4.2, the
bit length reduction due to this encoding also helps to improve the performance
of the FSearch protocols.

Computing Servers (CSs): Now that FSearch operates over shares of the compact
email and these operations are computationally intensive (as will be evident from
the subsequent sections), the PMS servers can use powerful dedicated servers for
this task. Henceforth, we refer to the servers for FSearch as Computing Servers
(CSs). Note that the PMS servers can be used as the CSs as well.

FSearch for the 2-Server Case: As before, we resort to a simple setting of two
servers and use a Secure Two-Party Computation (STPC) protocol for our com-
putations, where the CSs enact the role of MPC servers for the private query
phase. The functionality FSearch takes the shares of the search keyword and the
emails as input and returns the shares of the p-bit binary vector H. Looking
ahead, in the protocol, the shares of the keyword are generated by the search
agent A and sent to the corresponding servers (the PRF optimization from
Sect. 3.2 can be used here as well for long keywords). Furthermore, both shares
of the result of FSearch are given to A, who reconstructs the result locally.

Remarks: When the search agent A is the email user (S or R), it may be prefer-
able to download the entire mailbox and perform keyword search locally over
the cleartext. Though this näıve solution appears to be much cheaper for the
CSs,, it may not always be an ideal solution from the perspective of the email
user due to factors such as limited (mobile) bandwidth, local storage, battery
usage, or cross-device accessibility.

4.2 Instantiating FSearch

In this section, we look at concrete instantiations of the FSearch functionality.
First, we discuss a generic instantiation, called Circuit-Based search, applicable
to keywords of varying lengths and frequencies. Then, we present two optimiza-
tions: i) Bucketing-Based, and ii) Indexing-Based searches. The former is more
efficient for single word keywords, while the latter is more efficient for keywords
with higher frequency of appearance in the text. While primarily discussed within
a two-server framework, these approaches can be generalized to multiple servers.
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Circuit-Based Search. In this approach, the email is treated as a contin-
uous string of characters and the keyword is then matched at each position
of this string using an equality test circuit. To be precise, consider a text
W = w1∥ · · · ∥wt of length t and a keyword K = k1∥ · · · ∥ks of length s, with
s ≤ t. Let b denote the bit-length of characters (e.g., b = 7 for ASCII characters
and b = 6 for compact emails, cf. Sect. 4.1). At a high level, the strategy is as
follows: beginning with the i-th character position of W, a block of s characters
denoted by W̃i is derived and compared to the keyword K. We use an equal-
ity test functionality FEQ over ℓ-bit inputs to compare K and W̃i, defined as
Fℓ

EQ(x, y) = 1 if x = y, and 0 otherwise. We use the EQ circuit of [35,36,51] to
instantiate FEQ which is defined as follows:

EQℓ(x, y) =
ℓ∧

i=1

¬(xi ⊕ yi). (1)

There are t− s+1 blocks (W̃i) with one EQ protocol executed per block. All
of these executions are independent and can be carried-out in parallel. Once the
results have been evaluated, a cumulative OR of the results can be used to find
at least one matching block. To summarize, the search circuit SC is defined as

SC( K,W ) =
t − s+ 1∨

i=1

EQ sb (K,Wi).

# blocks

bit length(Keyword, Text)

(2)

Complexity: An instance of EQ over ℓ bit inputs require a total of ℓ − 1 AND
gates (cf. Eq. (1)) and has a multiplicative depth of ⌈log2 ℓ⌉ when evaluated as
a tree. The SC consists of t− s+1 such EQ circuits and additionally t− s AND
gates (as OR can be implemented via AND). Moreover, another ⌈log2(t − s+ 1)⌉
rounds are required to compute the final result. Hence, for ℓ = sb in our case,
the SC circuit has a total of (t + 1)sb − s2b − 1 (≈ tsb, when t ≫ s, b) AND
gates and a depth of ⌈log2 sb⌉ + ⌈log2(t − s+ 1)⌉. Note that the depth of the
circuit can be further reduced at the expense of increased communication using
multi-input AND gates [37,44].

The method described above assumes that the lengths of the text and the
keyword are known to all Computing Servers (CSs). In our case, because the
subject and body of an email are the text, hiding its length during computation
is impractical for efficiency reasons. However, we can hide the length of the s-
length keyword by padding it to a fixed length, which results in the following
modifications to the above approach.

Length-Hiding Keyword Search. Given two ℓmax-bit values x, y, let the func-
tionality FLEQ be defined as Fℓmax,ℓ

LEQ (x, y) = 1 if x[i] = y[i] for i ≤ ℓ and 0 other-
wise. For a given ℓ ≤ ℓmax, FLEQ returns 1 if the first ℓ-bits of x match with y and
0 otherwise. To hide the length ℓ = sb bits of keyword K, we use an additional
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ℓmax-bit length mask5 of the form Mx = m1∥ · · · ∥mℓmax = {1}ℓ∥{0}ℓmax−ℓ. Given
these values, we instantiate FLEQ by using a length hiding equality test circuit
LEQ, which is defined as

LEQℓmax(x, y,Mx) =
ℓ∧

i=1

¬((xi ⊕ yi) ∧ mi). (3)

The logic of the LEQ circuit is similar to that of EQ (Eq. (1)) in that the bits
of x, y are compared, but the result for the padded bits (last ℓmax − ℓ bits) is
discarded by ANDing them with the zero bits of the Mx value. This only adds
a layer of parallel AND gates to the EQ circuit.

Optimizations to the Circuit-Based Search: We further optimize the Circuit-
Based search using different properties of the mail text and keywords. If the
keyword contains no spaces, i.e., is a single word, it is beneficial to “jump” over
spaces in the target text to avoid unnecessary comparisons. However, checking
for spaces in the Circuit-Based Search is difficult as the entire email is treated as
a single string. Including the logic to check for spaces within the search circuit SC
(cf. Eq. (2)) is costly. Therefore, for our optimizations, each mail is considered
as a collection of distinct words rather than a continuous string of characters.
This also gives us advantages when the mail contains repeated words, since now
we can omit the duplicates from the search.

Bucketing-Based Search. To search on distinct words, we let the sender S
secret share each distinct word in the email text individually in a randomized
order. The words can also be padded to a fixed length to hide the original lengths.

Padding for length obfuscation should be done with caution, as it is a trade-
off between efficiency and privacy. Padding every word to a large fixed length
would yield maximum privacy. However, the efficiency may now be even worse
than that of the Circuit-Based Search. On the other hand, the padding can
be removed completely to maximize efficiency. As a compromise, we propose a
bucketing technique that allows users to tailor the trade-off between efficiency
and privacy to their specific needs.

A näıve way of instantiating a search given a list of secret shared words
and a keyword would be to use a circuit-based Private Set Intersection (PSI)
protocol [27,39,46]. However, linear complexity PSI protocols do exact but not
sub-string matches, and thus cannot be used easily to add padding to the words
for increased privacy. Therefore, we use our Circuit-Based Approach to search
through the list of words in the email.

The idea behind bucketing is to select buckets for different ranges of character
length and do the padding accordingly. For example, if we define a bucket for
words with lengths ranging from 1 to 4 characters, each word of that range in
the bucket is padded to 4 characters. Furthermore, the search keyword must be
padded in accordance with the bucketing scheme. To facilitate substring matches,

5 The agent A generates the shares of the mask and sends them with the keyword
shares.
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the search must be performed over the bucket defined for the keyword length as
well as the buckets for longer words. As a result, the bucketing technique is more
efficient for longer keywords as the shorter buckets can be ignored. In order to
hide the actual length of the keyword, we must use the LEQ circuit, see Eq. (3)
for the equality tests.

Indexing-Based Search. All search approaches described before were primar-
ily concerned with searching over each email individually. Multiple emails in a
mailbox, on the other hand, are likely to have many words in common. With
this observation, we further optimize the Bucketing-Based Search for single-word
search and build a search index for all emails in a mailbox.

Consider a mailbox containing p emails {E1, . . . ,Ep} and let d be the number
of distinct words in those emails. In the index table, each distinct word, denoted
as Wi, forms one row of the table and is associated with a p-bit string. The
vector is referred to as occurrence bit-string and has the following format: BWi =
BWi
1 ∥ · · · ∥BWi

p . Here, BWi
j = 1 denotes the presence of word Wi in the email

Ej and 0 denotes its absence.The index table is then secret shared among the
Computing Servers (CSs).

In contrast to the previous approaches where a bit value was returned for
each email, in the indexing-based approach, a keyword is first searched against
all the distinct words in the table and a d-bit string u = u1∥ · · · ∥ud is generated,
where d is the number of distinct words. The final search result is nothing but
a cumulative OR of all the occurrence bit-strings corresponding to the matched
rows. Formally, the p-bit result of the search is

Search Result =
d∨

i=1

ui · BWi , (4)

where the OR operations over a bit vector are simply the operator applied to
each bit position.

Given the secret shares of u among the CSs, one method for completing
the above task is to involve the search agent A. The vector u is reconstructed
by A and the corresponding occurrence bit strings are obtained securely using
FFetch (as will be explained later in Sect. 4.3). The agent can then perform the
OR operation locally to obtain the final result. Another method that avoids
agent intervention is to let the CSs compute the expression in Eq. (4) using the
underlying MPC protocol.

The index-based approach makes the search complexity independent of the
number of mails, as the search depends only on the number of distinct words,
except for final computation in Eq. (4), enhancing efficiency for large mail boxes.

Comparison: Each of the search techniques discussed above, i.e., Circuit-Based,
Bucketing-Based and Indexing-Based, have their own pros and cons, depending
on the search keyword length, number of mails in the mailbox and distinct
keyword occurring. We compare the different methods in Table 2 in Sect. A.
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4.3 Private Fetch FFetch

The FFetch functionality, enables the search agent A to privately retrieve emails
from the Computing Servers. FFetch, takes the p-bit string as input and returns
the mails corresponding to the bit positions with value 1. Although the stan-
dard IMAP FETCH [13, §6.4.5] command can be used to retrieve the desired
email shares from each server, in the long run, frequency analysis can reveal
details of the search queries to the servers, particularly the keywords used [31].
To avoid this, we adapt multi-server Private Information Retrieval (PIR) to
instantiate FFetch.

Consider a database D containing p documents with the server CSi holding
the share Di = {⟨D1⟩i , . . . , ⟨Dp⟩i}, where each ⟨D⟩i = (flipi∥keyi) for i ∈ {1, 2}
(cf. Sect. 3.2). First, the client A samples two symmetric keys sk1, sk2 for a
symmetric-key encryption scheme Enc() and sends key ski to server CSi. The
next step, on a high level, is that each CSi will encrypt its share (corresponding
to each document) with ski and send this to the other server. Let D̃i denote
the encrypted database share of CSi. The encrypted database is now defined as
D̃ = D̃1∥D̃2. Then the client A sends the shares of the selection bit vector b to
each server and the servers compute bi ·D̃ and send the result to A. The client A
then combines these results by XORing them and decrypts the result using the
encryption keys to obtain the queried email.

5 Implementation and Benchmarks

This section describes our implementation of PrivMail and evaluate the perfor-
mance of reconstruction and keyword search over secret shared emails. A detailed
discussion and more benchmarks are provided in the full version [10].

5.1 Email Transfer

The implementation of PrivMail consists of several parts, which were discussed
in Sect. 3. Our implementation of the Sender Client Proxy (SCP) runs in a
Docker container [1] and works with any Mail User Agent (MUA) that allows
the user to manually specify the outgoing SMTP server (i.e., basically any email
client). We also implemented a simple Recipient Client Script (RCS) for email
reconstruction at the receiver’s end and use it for performance evaluation. We use
the YAML data-serialization language [3] to store the emails in the filesystem.

Reconstruction Performance. The reconstruction of the shares consists of
three steps: fetching of the email shares from the (IMAP) servers, pairing, and
finally combining the shares. For our Recipient Client Script (RCS), the retrieval
is handled using the imaplib module [2] and after each fetch, the email is stored
in a dictionary, where the email’s Unique Identifier (UID) is the key and the share
is the value. In the second step, the dictionaries are combined together. Since the
dictionaries are hash maps in Python and the keys are random looking identifiers,
the lookup for each email is a constant time operation. The runtime to pair and
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combine 500 emails from two servers takes only around 0.235 seconds, giving us
a throughput of 2,127 emails per second on a regular laptop using Intel Core i7-
8565U. The runtime of the fetching step depends on the IMAP server capacity,
geographic location, and network setup, but is likely to be dominant (throughput
was only 20 emails per second in our experiments). Thus the overhead introduced
by PrivMail compared to fetching and viewing regular emails is negligible.

5.2 Email Search

We implement the private queries described in Sect. 4 using the mixed-protocol
Secure Multi-Party Computation (MPC) framework MOTION [9]. We use the
boolean GMW protocol [14,22] between two parties for our performance evalu-
ation, but our implementation can also be used in the N -party setting with full
threshold. Our code is publicly available under the MIT License6.

Benchmark Settings for Search. We tested all three approaches from
Sect. 4.2 for private search (Circuit-Based, Bucketing-Based, and Index-Based)
on a real-world dataset with varying parameters, using our special encoding
from Sect. 4.1. For the Bucketing-Based approach, we chose to create four buck-
ets, each of size 5 characters, i.e., buckets for words with (1–5, 6–10, 11–15,
16–20) characters. All words that are more than 20 characters long are ignored.
We instantiate the MPC protocols with computational security parameter 128
and statistical security parameter 40.

We run experiments against subsets of the publicly available Enron Email
Dataset [34], which contains over 500,000 emails, with each email containing
on average 1,607 characters and 237 words. On examining the distribution of
distinct words in this database, we conclude that the bucket size distribution
for our chosen buckets are (18.8%, 50.6%, 21.7%, 8.9%). This implies that, on
average, more than half of the words are between 6 and 10 characters long. Our
benchmark subsets are drawn from Kenneth Lay’s inbox.

The benchmarks are run on two dedicated simulation machines, each with an
Intel Core i9–7960X (16 physical cores @ 2.8 GHz) processor and 8×16 GB DDR4
RAM. We simulate a Wide Area Network (WAN) setting with bandwidth limited
to 100 Mbit/s, and Round-Trip Time (RTT) of 100 ms. To ensure consistency,
we iterate each simulation 5 times and compute the mean for the final result.

Search Performance. We implement and compare our three search meth-
ods from Sect. 4.2. Since the Bucketing and Indexing-Based approaches already
provide keyword length hiding, we use the Circuit-Based search’s length hid-
ing variant for a fair comparison. The Circuit-Based approach thus requires an
additional layer of AND gates over the keyword length non-hiding variant.

Table 1 compares the performance of our three search methods in the online
phase across various keyword lengths. Except for keyword length s = 3, we
find that the Indexing-Based Approach outperforms the other two approaches
in all cases. This is justified because the search domain for both the bucketing

6 https://encrypto.de/code/PrivMail.

https://encrypto.de/code/PrivMail
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Table 1. Evaluation of online phase of keyword length-hiding search methods: circuit,
bucketing and indexing. Best results are in bold.

Keyword Length s Method # Emails = 100 # Emails = 200

Time (s) Comm. (MiB) Time (s) Comm. (MiB)

3 Circuit 9.63 2.61 18.19 5.80

Bucketing 9.15 16.28 14.07 35.76

Indexing 3.57 6.41 6.58 11.22

8 Circuit 13.68 4.62 25.96 10.41

Bucketing 7.51 7.09 12.98 15.91

Indexing 3.19 3.73 5.22 6.97

13 Circuit 13.78 6.59 23.73 14.93

Bucketing 4.59 1.27 10.09 2.91

Indexing 2.48 0.63 4.26 1.48

18 Circuit 15.38 8.58 27.51 19.47

Bucketing 4.19 0.16 8.97 0.45

Indexing 2.68 0.06 3.96 0.25

and Indexing-Based Approaches shrinks for long keywords due to the omission
of buckets for short keywords. We also see that the Indexing-Based Approach
improves by ≈ 2× over the Bucketing-Based Approach in terms of both runtime
and communication. Furthermore, the Indexing-Based method is expected to be
more and more efficient compared to the other methods for a larger number of
emails, since it eliminates duplicate words across the entire email set. We remark
that in settings where the number of target documents is large and the document
format is more regular, our indexing-based search can be orders of magnitude
more efficient than bucketing-based search.

A detailed benchmark of the search approaches from Sect. 4.2, along with the
details of the Thunderbird plugin, is provided in the full version [10, §6.2].

6 Related Work

A line of work that is very closely related to the secure keyword search in Sect. 4
is Secure Pattern Matching (SPM). SPM [25,57,61,62] entails a server with text
x ∈ Σn (over some alphabet Σ) and a receiver with pattern p ∈ Σm with
m ≤ n. Without revealing additional information, the receiver learns where the
pattern occurs as a substring of the server’s text. SPM is a highly researched
field with applications in various areas such as database search [11,20], net-
work security [40], and DNA analysis [41]. Circuit-based approaches for pattern
matching techniques have been proposed in [30,32]. These circuits are designed
primarily for genomic computing and DNA matching, thus they aren’t directly
applicable in our context of keyword search (cf. Sect. 4.2). Later works such as
[6,26,62] presented techniques based on homomorphic encryption. However, in
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these works, one of the parties involved owns the keyword while another (or a
group of parties) owns the database, so they are not directly applicable to our
case. In Sect. 4.2, we create custom circuits for our use cases in PrivMail.

We give a detailed discussion of related works on topics such as E2EE, SSE,
MPC, PSI and PIR in the full version [10, §2].

Acknowledgements. This project received funding from the European Research
Council (ERC) under the European Union’s Horizon 2020 research and innova-
tion program (grant agreement No. 850990 PSOTI). It was co-funded by the
Deutsche Forschungsgemeinschaft (DFG) within SFB 1119 CROSSING/236615297 and
GRK 2050 Privacy & Trust/251805230.

A Comparison of the Different Search Techniques

Each of the search techniques discussed in Sect. 4, i.e., circuit-based, bucketing-
based, and indexing-based, have their own pros and cons depending on the key-
words being searched. The user or the email client can therefore choose the most
beneficial technique according to their requirements. In Table 2, we give a com-
parison between the different techniques for various use-cases, highlighting the
most efficient techniques for each use-case.

Table 2. Efficiency comparison of the different search techniques for different types of
keywords. The most efficient technique is marked in bold.

Circuit Bucket Index

Longer
Keywords

More efficient for
longer keywords
than for smaller

Significantly more
efficient as
smaller buckets
will be completely
skipped

Efficient only if the
keyword is frequent
in the text

Higher
Frequency
Keywords

Efficiency remains
the same as for any
keyword

Efficient if the
keyword is of longer
length

Very efficient for
frequent words in
the text

Partial
Matches

Very efficient as
the text is
considered as a
continuous string
of characters

Would incur higher
cost to implement

Would incur higher
cost to implement

Special
Words

Efficient, as all
words are treated
with same
priority

Efficient if the
word is of
medium to long
length

Not very efficient as
the word won’t be
frequent in the text
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Performance of Circuit-Based Search. Table 3 summarizes our benchmarks
for search across four different keyword lengths, s ∈ {3, 8, 13, 18} (corresponding
to the average of our bucket sizes), on email sets of sizes 100 and 200. The total
computation and communication overheads grow proportionally to the keyword
length and number of emails in the sets as the search circuit size grows.

Table 3. Evaluation of circuit-based search (Sect. 4.2). Runtime (Time) is in seconds
and communication (Comm.) between the servers in mebibytes (MiB).

Keyword Length s Phase # Emails = 100 # Emails = 200

Time (s) Comm. (MiB) Time (s) Comm. (MiB)

3 Online 4.80 1.22 11.67 2.72

Total 12.19 63.42 33.45 145.28

8 Online 5.20 3.12 10.15 7.03

Total 20.96 174.25 48.65 399.61

13 Online 5.12 5.03 11.35 11.33

Total 25.33 284.15 60.43 652.05

18 Online 4.31 6.89 9.40 15.52

Total 32.47 393.07 73.74 902.54

We parallelize each equality test circuit (see Eq. (1)) with Single Instruction,
Multiple Data (SIMD) operations, which results in an almost linear total runtime
with respect to the keyword length. The minor difference in online runtime is
caused by runtime fluctuations in our WAN simulation and can be evened out
with additional iterations. The remaining cumulative OR in Eq. (2) dominates
the online runtime, giving a nearly constant runtime.
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