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ABSTRACT
The problem of finding the kth Ranked Element (KRE) is of par-
ticular interest in collaborative studies for financial and medical
agencies alike. Many of the applications of KRE deal with sensitive
information that needs to be protected. The protocol by Chandran
et al. (SECRYPT’22) considers a model where multiple parties hold
datasets with many elements and wish to compute the kth element
of their joint dataset. In their model, all participating parties inter-
act with a central party in a star network topology. However, they
leak some intermediate information to the central party.

In this work we use differential privacy techniques to hide this
leakage. We use the Laplace mechanism for introducing differen-
tially private noise and use sigmoid scaling to improve the accuracy
of the protocol. We show that our modifications have only a small
impact on the accuracy. We also give experimental performance
results and compare our work to the previous works on KRE.
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1 INTRODUCTION
As more and more services are shifting to online platforms, the data
generated and stored by individual clients are increasing exponen-
tially. This data, is often sensitive which requires secure processing
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by mutually distrusting entities, an area called privacy-preserving
data analysis.

Among many different functions used in data analysis, finding
the kth ranked element (KRE) is a very important function. KRE
allows the parties to learn the kth element of a sorted set. The
KRE is a widely used analytical function in financial and medical
fields. It helps to measure the tendencies of data distribution, for
instance the measure of central tendency, mean, or the maxima or
minima of a database. For example, the median function is used
by insurance companies to evaluate the median of medical claims
by customers to determine future offers and expenses. In many
applications the inputs of the computation are sensitive and need to
be protected, while still providing accurate results. This leads to the
requirement of techniques such as Secure Multi-Party Computation
(MPC) which can be used to compute the KRE function securely.

Although a generic MPC protocol [2, 7] can be used to compute
the KRE, these protocols have quadratic complexity in the number
of parties. A specific protocol for finding the KRE among 𝑛 parties
was first given in [1]. This protocol implements a binary search
algorithm which requires a non-constant number of sequential
rounds. Later, in [10], a constant round protocol for finding the
KRE in a star network topologywas proposed. The star topology is a
natural setting in applications like the one mentioned above where
the insurance agency can communicate with all hospitals, but the
hospitals don’t need to communicate with each other. This protocol
however traded-off communication for runtime. Even though the
constant rounds resulted in efficient runtime, the communication
complexity is increased drastically as the 𝑛 parties need to conduct
𝑛2 comparisons. Another protocol for computing the KRE in a star
network topology was proposed by Chandran et al. in [4]. Their
protocol was based on the protocol of [1], where a binary search
was conducted between the parties, but in a star network topology,
reducing the communication cost of the protocol. In this protocol
each party holds a database with multiple inputs and then securely
compute the KRE of the joint database. However, this protocol leaks
some intermediate information to the central party, which, even
though doesn’t leak any individual party’s information, reveals the
overall distribution of the elements in the union of the databases.

We extend the protocol of [4] to reduce the intermediate leakage
by using differential privacy techniques. Differential privacy (DP) [5]
has been used in several works [8, 9] to reduce the leakage by reveal-
ing a differentially private value. We add noise to the intermediate
leakage in the protocol of [4] and show that the resulting leakage
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is differentially private and thus does not let any adversary learn
anything about the database distribution. For a practical application
such as the onementioned above, the result of the computation need
not be 100 percent precise and an approximate solution suffices.

In several works [3, 6], DP techniques are combined with MPC
protocols to offer additional privacy guarantees. While these proto-
cols focus on output privacy, our work addresses the leakage in the
specific KRE protocol of [4], while also providing high accuracy.

2 DIFFERENTIALLY PRIVATE KRE
We extend the KRE protocol of [4], into a differentially private
variant where the intermediate leakage of their protocol is reduced
by using DP techniques. Our protocol also runs a binary search on
the joint database to find the KRE.

Leakage analysis. In [4], Chandran et al. propose a KRE protocol
in a star network topology, where a central party communicates
with all the other parties. Although this reduces the communication
complexity of the protocol, some intermediate values are leaked
to the central party. More specifically, in each round, the central
party learns the number of elements in the union of the databases
that are less than and greater than a particular value. This lets
an adversary learn the distribution of the elements in the joint
database. To eliminate this leakage, we introduce noise sampled
from the Laplace distribution, which is proven to be 𝜖−differentially
private [5], where 𝜖 is the privacy parameter. Since, in our protocol,
the noise is generated locally by each party, the central party cannot
differentiate between the noise levels added. The noise generation
technique is discussed in detail below, where we can see that even
though the noise is data dependent, it does not leak anything to
the central party.

Protocol description. We give a brief description of our protocol
ΠKRE (Figure 1). Let 𝑛 ≥ 2 parties be participating in the computa-
tion, with each party having database 𝐷𝑖 , for 𝑖 ∈ [1, 𝑛] as its input.
Our protocol is secure against a semi-honest adversary which can
corrupt at most 𝑛− 1 parties. We assume, without loss of generality,
that party 𝑃1 is the central party. Let the elements in

⋃
𝐷𝑖 be in

range [𝑎, 𝑏]. The rank 𝑘 , the range [𝑎, 𝑏], and the size of the joint
database𝑁 is publicly known to all parties (the size of the individual
database, |𝐷𝑖 |, is private). The parties run a binary search algorithm
to search for the kth ranked element in the union of their database.
In our protocol, each party adds noise to the number of elements
less (𝑙𝑖 ) or greater than (𝑔𝑖 ) 𝑚 and sends the noisy counts to the
central party. This way, after the decryption, 𝑃1 learns a noisy value
for both the number of elements less and greater than𝑚, therefore
preventing an adversary from recognising the actual data distribu-
tion. Figure 1 gives a detailed description of our protocol. The step
for adding the differentially private noise is highlighted in gray.

Noise analysis. Note that, as fresh noise is added in each round
of the protocol, the noise doesn’t accumulate to form a large noise
towards the last rounds of the protocol. Moreover, we use Sigmoid
scaling for the Laplace distribution so that the noise added depends
on the size of the database and the individual parties’ data distri-
bution. We now show how using Sigmoid scaling for the Laplace
function still preserves the DP guarantees. As the noise is added to
the count function, the DP guarantees are proved with respect to

Protocol ΠKRE

Parameters: 𝑘 is the rank, 𝑁 is the total number of elements in
the union of the databases and [𝑎,𝑏 ] is the range of elements
in the union.
Initialization: Each party 𝑃𝑖 , for 𝑖 ∈ [1, 𝑛], sorts the elements
in its database in an ascending order.
Key Generation: The parties 𝑃1, ..., 𝑃𝑛 engage in a passively
secure protocol 𝜋Gen to generate a public key pk and their re-
spective shares sk𝑖 of secret key.
Local Computation: Each party 𝑃𝑖 , 𝑖 ∈ [1, 𝑛] does the follow-
ing:

(1) Compute𝑚 = ⌊ (𝑎 + 𝑏 )/2⌋.
(2) Compute the number of elements 𝑙𝑖 less than𝑚 and the

number of elements 𝑔𝑖 greater than𝑚.
(3) Sample random noise 𝑙𝑛

𝑖
, 𝑔𝑛

𝑖
←− L, where L is the

Laplace distribution, and compute 𝑙 ′
𝑖
= 𝑙𝑖 + 𝑙𝑛𝑖 and

𝑔′
𝑖
= 𝑔𝑖 + 𝑔𝑛𝑖 .

(4) Encrypt the inputs, 𝑐𝑖 = Encpk (𝑙 ′𝑖 ) and 𝑐′𝑖 = Encpk (𝑔′𝑖 ) .
Interactive phase:

(5) The parties 𝑃2, ..., 𝑃𝑛 send 𝑐𝑖 and 𝑐′𝑖 to 𝑃1.
(6) 𝑃1 computes [𝐿] = Σ𝑐𝑖 and [𝐺 ] = Σ𝑐′

𝑖
.

(7) The parties 𝑃𝑖 , 𝑖 ∈ [1, 𝑛], jointly decrypt [𝐿] and [𝐺 ]
and party 𝑃1 obtains 𝐿 and𝐺 .

(8) 𝑃1 does the following comparison:
(a) If 𝐿 < 𝑘 and𝐺 ≤ 𝑁 − 𝑘 , then𝑚 is the KRE.
(b) If 𝐿 ≥ 𝑘 , then 𝑃1 sends 0 to all parties and the parties

repeat from the local computation phase with 𝑏 =

𝑚 − 1.
(c) If𝐺 > 𝑁 − 𝑘 , then 𝑃1 sends 1 to all parties and the

parties repeat from the local computation phase with
𝑎 =𝑚 + 1.

Figure 1: Protocol for secure and differentially private KRE.

this function. The Global Sensitivity (GS) of the count function is 1,
as changing one element in the database changes the value of the
function by at most 1. Then, the scale of the Laplace distribution
should be

𝜆 =
𝐺𝑆

𝜖
=

1
𝜖
. (1)

We set the Sigmoid function to be dependent on the individual
database size and the counter value, such that the amount of noise
is reduced as the last rounds approach, giving us more accuracy.
Our Sigmoid function is defined as follows:

𝜎 (𝑥) = 1
1 + 𝑒𝑝𝑥−5

· log𝑁, (2)

where 𝑝 is the compression of the Sigmoid function which has a
minimum value of 0 and scales w.r.t the privacy parameter 𝜖 , and 𝑥
is computed as 𝑙𝑖/|𝐷𝑖 | or 𝑔𝑖/|𝐷𝑖 | and varies between 0 and 1. Using
the Sigmoid function (2) for scaling the Laplace distribution we get

𝜆 = 𝜎 (𝑥) . (3)

Then, from (1) and (3) we get

𝜖 =
1 + 𝑒𝑝𝑥−5
log𝑁

. (4)

We see that for a database size of 2, the maximum value of 𝜖 is
achieved at approximately 1.48. The recommended value for 𝜖
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is ≤ 1 [5]. We can safely assume that for practical applications, the
database size is quite large, giving a very small 𝜖 value. Therefore,
the DP requirements are safely met by using Sigmoid scaling and
leakage is hence differentially private.

3 EVALUATION
We implemented our protocol and analyse its performance with
regard to accuracy, communication cost, and runtime. We also
compare our results with the previous works on the KRE [4, 10].

Accuracy. We analyse the accuracy of our protocol for different
noise levels and for different values of 𝑘 . We run the experiments
for 10 parties and a total database size of 10k. In our protocol,
the addition of noise increases the number of rounds required to
compute the kth element. However, since we add new noise at each
round and since the scaling of the noise generation also depends
on the local computation result of each round, the protocol always
terminates and does not go into an infinite loop. We notice that
the accuracy of the result depends on the amount of noise added
and the value of 𝑘 . For instance, for 𝑘 = 1 (or 𝑘 = 𝑛), i.e., for the
minimum (or maximum) element in the database, we obtain high
accuracy with all noise levels (see Figure 2a). For 𝑘 = 𝑛/2, i.e., the
median of the database, we get lower accuracy when adding high
noise levels (see Figure 2b).

(a) Minimum (𝑘 = 1) (b) Median (𝑘 = 𝑛/2)

Figure 2: Accuracy of computation of the kth element with
different noise levels.

In Figure 2a, we see that the accuracy is not affected by the
addition of noise, whatever level it is. This is due to the fact that
when a binary search algorithm is used, in the case of minimum
(or maximum), the protocol selects one branch and mostly stays in
that branch till termination. As the noise is added using Sigmoid
scaling, the probability of adding noise as we approach the KRE,
i.e., minimum (or maximum), is lower, which makes sure that our
protocol is highly accurate for these values of 𝑘 . In contrast, for
the median, as the correct value lies at the root of the binary tree,
addition of noise causes the protocol to switch branches quite often,
making it select a less accurate value for the median. More analysis
on the deviation of the median element is left for future work.

Communication and runtime. As our protocol runs for a larger
number of rounds due to the noise added, the expected trend in
communication and runtime would be that they are increased sub-
stantially. We observe that the communication cost required for our

protocol is, as expected, more than the leaky original [4]. However,
the runtime of our protocol does not increase as much due to the
high parallelizability of our protocol. For all the benchmarks we
consider low noise level and sigmoid scaling of noise.

For better comparability, we benchmark our protocol in a similar
setting to [10] and [4]. We consider a setting with 100 parties, each
holding one element and run our benchmarks in a simulated WAN
setting with a bandwidth of 100Mbits/s and a latency of 100ms. We
use a 2023 Apple MacBook Pro with Apple M2 pro chip and 32GB
RAM. Table 1 shows the comparison of the costs for the different
KRE protocols1. Our protocol has comparable runtime to the KRE
protocol of [4], and is especially fast in cases where the parties
hold just one element. The communication cost for our protocol
is ≈ 93× less than that of [10], but is ≈ 16× more than that of the
leaky protocol [4]. Since, in our protocol, the number rounds is
directly proportional to the amount of noise added, the runtime
and communication are in turn directly proportional to the amount
of noise.

Protocol Leakage Comm. (MB) Time (s)
[10] Non-leaky 60.88 441.00
[4] Leaky 0.04 7.44

This work DP Leakage 0.65 7.53
Table 1: Cost comparison of different KRE protocols.

An advantage of our implementation is that it allows flexibility
with the noise generation mechanism, i.e., the Laplace mechanism
can be replaced by any other mechanisms such as the Gaussian
mechanism. We leave the evaluation of our protocol with different
noise generation techniques as future work.
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