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Introduction

Secure Two-Party Computation (2PC)
- compute functionalities f(x1, z2) = (y1, y2) among distrusting parties

- each party P, learns only their own input and output.

Example: Private Inference for Image Classification
- service provider’s trained model and client’s Image stay private
- only client learns classification result

Our Contributions

Generic 2PC
- first 2PC framework with five different protocols and all conversions
* new protocol optimization and conversions
- integration into the recent MOTION [BDST20] framework

Private Inference for Neural Networks

* using standard MPC techniques without modifying the networks
*implement common operations as specialized building blocks
- with performance

- better than using generic 2PC protocols for circuits
- comparable to recent, highly optimized works

- support for the Open Neural Network Exchange (ONNX) file format
— Interoperability with deep learning frameworks used in industry

Five Generic 2PC Protocols

- to evaluate Boolean and arithmetic circuits with semi-honest security
- (2)° = ((z)?, (z)5) denotes a sharing of value x with protocol S
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- with FreeXOR and Half-Gates optimizations
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Auxiliary Protocols and Preprocessing
- based on Oblivious Transfer

Conversion Protocols

Conversions Between All Five Protocols

Y
- change representation of shared values ///‘ K\\

- evaluation of hybrid circuits combining H—
Boolean and arithmetic components >.
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-based on protocols from ABY [DSZ15], |
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Improvements to ABY [DSZ15] and ABY2.0 [PSSY21]
* Security parameter &, bit length /¢

B — A: using shared bits Y — A: without online comm.

setup online setup online
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this /x + (2/2 20 1 this (20— 1)k + ¢ 0 0

f — o: optimized setup phase g timized setup for mixed products

setup comm. s (b-m)? (b)Y - (n)?
ABY2.0 Uk + 02 *(b-n)* (D)7 - (n)°
this ((—1Dx+02/2—14/2 * (b1 - bo)® <= (b1)” - (bo)”

ABY [DSZ15] vs. ABY2.0 [PSSY21]

Multiplications / ANDs / Matrix Products / Convolutions

Online Communication
* GMW: linear In Input size - ABY2.0: linear in output size

Setup Phase

- GMW: batched generation of Beaver triples ({a)?, (b)4, (a - b)*)
« ABY2.0: function-dependent setup = SIMD even more important

Conversions

- newer conversions improve on original ABY [DSZ15] protocols
*ABY: A/B — Y:2rounds, Y — A/B: no communication
* ABY2.0: /5 <+ Y: both 1 round

— same overall round complexity when alternating A/a and Y

Neural Networks

- many batched operations — reduces disadvantage of ABY2.0 setup
« ABY2.0 clearly better for ReLU
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Neural Network Building Blocks

Idea

- exploit high-level structure of networks,
and do not compile to circuits

W (5x1x5x5)

* use generic protocols, @
but implement them in a optimized way

- do not change the networks’ architectures =D
Currently Supported Tensor Operations m

- fixed-point arithmetic with truncation by [MZ17]

- fully-connected and convolutional layers (A4/«) s

» ReLU (multiple variants Y/B/3/A + B/a + ) m

- MaxPool (using optimized circuits Y/B/3)

- AveragePool (A4/«) e

Neural Network Benchmarks

Small Network: MiniONN MNIST [LJLA17]
Neural Network Building Blocks vs. Generic 2PC for Hybrid Circuits
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Larger Network: MiniONN CIFAR-10 [LJLA17]
Comparison with Prior and Concurrent Work [JVC18; MLS+20; RRK+20]
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Extending the MOTION Framework = MOTION2NX

Extending and Improving the Framework

- implementation of the five generic 2PC protocols and conversions
- architectural improvements to increase flexibility and performance

- cleaner interfaces, decoupled components
- new system for asynchronous communication
- executors allow for different execution strategies

- single instruction multiple data (SIMD) operations
- automatic collection of run-time statistics and metadata
- support for HyCC-generated [BDK+18] hybrid circuits

Support for Neural Networks

secure tensor data types

* neural network building blocks

- parallelized tensor operations

* ONNX support for interoperability with PyTorch, TensorFlow, etc.

Open Source under an MIT License
- available on GitHub: https://encrypto.de/code/MOTION2NX

More Information

Extended Abstract
https://encrypto.de/papers/BCS21PriMLNeurIPS. pdf
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