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Abstract

We present a new framework for generic mixed-protocol secure two-party computa-
tion (2PC) and private evaluation of neural networks based on the recent MOTION
framework (Braun et al., ePrint ’20). We implement five different 2PC protocols in
the semi-honest setting – Yao’s garbled circuits, arithmetic and Boolean variants
of Goldreich-Micali-Wigderson (GMW), and two secret-sharing-based protocols
from ABY2.0 (Patra et al., USENIX Security ’21) – together with 20 conversions
among each other and new optimizations. We explore the feasibility of evaluating
neural networks with 2PC without making modifications to their structure, and
provide secure tensor data types and specialized building blocks for common tensor
operations. By supporting the Open Neural Network Exchange (ONNX) file format,
this yields an easy-to-use solution for privately evaluating neural networks, and is
interoperable with industry-standard deep learning frameworks such as TensorFlow
and PyTorch. By exploiting the networks’ high-level structure and using common
2PC techniques, we obtain a performance that is comparable to that of recent,
highly optimized works and significantly better than when using generic 2PC for
low-level hybrid circuits.

1 Introduction

Secure Computation Secure multi-party computation (MPC) allows a set of mutually distrusting
parties to evaluate a functionality on their private inputs and obtain private outputs such that each
party learns only what it can deduce from its own input and output, [21]. The two-party case is
also designated as secure two-party computation (2PC). MPC allows computation on data which
the owners are either reluctant or not allowed to share with each other, e.g., due to data privacy
regulations. Use cases include computing statistics on sensitive medical and corporate data [14], or
outsourcing of computation to cloud services [25]. The concept of secure computation dates back to
the 1980s [47, 46, 18], and has become increasingly practical over the last two decades [34, 39].

Machine Learning As a completely different technology, machine learning techniques such as
deep neural networks have been applied to many different tasks over the last years, e.g., image classi-
fication [19]. Since training neural networks requires large datasets and significant computational
resources, companies might be inclined to keep the resulting models secret to protect their investment.
On the other hand, customers may be hesitant to just pass their input to the service provider.
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Privacy-Preserving Machine Learning The combination of multi-party computation and machine
learning allows a variety of privacy-preserving online services [32, 23, 4, 8]. For example, to classify
a picture, a customer can run an MPC protocol with a service provider instead of just uploading
the picture. It then gets the result of the classification without having to reveal the input, while the
provider can keep its model secret.

Our Contributions In this work, we present the first secure two-party computation framework
combining five different protocols such that shared data can be converted arbitrarily among the
protocols. In the framework, we combine Yao’s protocol [46, 31], the arithmetic and Boolean variants
of GMW [18] and the secret-sharing-based arithmetic and Boolean protocols from ABY2.0 [38]. We
analyze the protocols, and introduce new optimizations and conversion protocols. We integrate the
protocols into the recent MPC framework MOTION [7] which is partially redesigned and extended.
Furthermore, we explore the feasibility of private neural network inference using standard MPC
techniques without making modification to the networks. To this end, we discuss protocols for
common neural network operations, and implement them as specialized building blocks in MOTION.
By supporting the ONNX file format [37] we enable interoperability with deep learning frameworks
used in industry such as TensorFlow and PyTorch. Finally, we evaluate the performance of our
framework using various benchmarks, and compare the implemented protocols among themselves
and with prior work. The specialized building blocks perform clearly better for neural networks than
the equivalent generic 2PC protocols for hybrid circuits, and we achieve a performance comparable
to recent, highly optimized works such as GAZELLE [24] and DELPHI [35].

We call our framework MOTION2NX and made it available on GitHub1 under an MIT license.

Related Work The most relevant works regarding generic MPC are ABY [13], MOTION [7], and
ABY2.0 [38] upon which we heavily build (see § 2, § 3). TASTY [22], ABY and MOTION are
software frameworks for 2PC and MPC in the semi-honest security model supporting Boolean and
arithmetic operations. MP-SPDZ [26] and SCALE-MAMBA [2] provide protocols that are secure
in the malicious model. EzPC [10] and HyCC [9] can compile high-level function descriptions into
hybrid circuits usable for MPC. There is a large body of work on private evaluation of neural networks,
e.g. [4, 16, 36, 24, 42, 41]. Many of these modify the networks, e.g., by quantizing weights, to obtain
more efficient protocols, whereas we try to preserve the original network as much as possible.

Organization In § 2, we give an overview of the used protocols. § 3 covers our improvements
to the MOTION framework, and in § 4, we discuss the results of our experimental evaluation.
Supplementary material can be found in the appendix.

2 Protocols

In this work, we consider five generic 2PC protocols for Boolean circuits (denoted with Y , B, β) and
arithmetic circuits over rings Z2` (denoted with A, α). The protocols are secure in the semi-honest
security setting, i.e., corrupted parties follow the protocol, but try to learn additional information. As
in ABY [13], we use Yao’s garbled circuit protocol (Y ) [47, 46] and the arithmetic (A) and Boolean
(B) variants of the GMW protocol [18]. Additionally, we combine these with the new arithmetic
(α) and Boolean (β) protocols introduced in ABY2.0 [38]. See § A.2 for a short summary of the
protocols. For all protocol operations, we consider single instruction multiple data (SIMD) variants.
They operate element-wise on vectors of values, and can be implemented much more efficiently.

Conversions Some operations (e.g. additions, multiplications) are naturally expressed as arithmetic
circuits, and others are more efficiently represented in Boolean circuits (e.g. comparisons). Hence, it
is often advantageous to combine both kinds into a hybrid circuit. To evaluate such a hybrid circuit
with 2PC protocols, we need to convert between different representations. We provide conversions
between all five protocols. Many are based on prior work [13, 38], some are new or optimized.

Neural Networks We use the generic 2PC protocols to securely evaluate the tensor operations
in neural networks. Here, we encode the values in Z2` using a fixed-point representation and the
truncation protocol by [36] instead of using floating-point numbers. Since some of the operations are
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more efficiently computed with an arithmetic protocol and others with a Boolean protocol, we use the
conversions to change the data representation as necessary. For fully-connected and convolutional
layers, we use generalizations of the integer multiplication in the A and α protocols (cf. [36]).
AvgPool is a linear operation and needs only a truncation. MaxPool is based on optimized Boolean
circuits. For the ReLU activation function we provide different variants, e.g., based on special
bit-integer multiplication protocols. More details about these tensor operations are given in § A.3.

ABY vs. ABY2.0 We compare the ABY [13] (A, B, Y ) and ABY2.0 [38] (α, β, Y ) protocol suites:
Storing an α shares requires twice the space compared to an A share. Linear operations are computed
in both cases locally without interaction, although ABY2.0 requires more (local) computation during
the setup phase. The ABY2.0 multiplication needs only half of the online communication compared
to GMW [38]. More generally, the online communication in GMW is linear in the size of the inputs,
whereas for ABY2.0, it is linear in the output size. This also holds when the multiplication protocols
are generalized, e.g., to matrix multiplications or convolutions.

The setup phase, i.e., the part of the protocol that can be executed before the inputs are known,
of GMW depends only on the number of multiplications. For ABY2.0, it also depends on the
circuit structure, which makes it more costly in general. In the case of neural networks, the (matrix)
multiplication operations are relatively few and relatively large compared to integer multiplications
in a normal arithmetic circuit. Since MaxPool and ReLU layers repeatedly apply the same basic
function, the setup can be computed in batches with SIMD operations. Thus, the disadvantages of a
function-dependent setup phase do not carry much weight in the case of neural networks.

We compare the conversions among the A, B, and Y protocols to those among α, β, and Y . The
latter were presented by [38] who also showed that they compare favorably to the original ABY
conversions [13]. The newer conversions presented in our work improve on ABY [13] and the
differences have become smaller. Looking at costs, a pattern becomes apparent: The conversions
from A/B to Y require two rounds while the other direction is free of communication in the online
phase. On the other hand, converting from α/β to Y and vice versa costs one round. Overall, in a
deep circuit (e.g., a neural network) where different layers are computed alternately with Y and one
of A/α, the number of rounds in the online phase are the same.

We examine different ways to compute ReLU layers in neural networks. The online communication
costs for the ABY2.0 protocols are significantly lower compared to their GMW counterparts. The
total communication costs are either similar or slightly in favor of ABY2.0.

3 Extending MOTION for Neural Networks

Extending the Framework In this work, we build upon and extend the MOTION framework
for mixed-protocol multi-party computation [7]. It is not only a library implementing some MPC
protocols, but also a framework that consists of useful components which can be composed and
extended as needed. We implement the five generic 2PC protocols (§ 2) and conversions among them,
as well as building blocks for neural network evaluation.

We redesigned many of the framework’s interfaces to reduce overhead and improve flexibility by
decoupling the components (see § B for more details). Based on the terminology of circuits,
MOTION [7] implements the primitive operations of protocols in Gate classes, which it evaluates
using fibers, i.e., threads that run in user space. We extracted the execution code into Executor
classes that take a collection of gates and execute them according to some strategy. This improves the
framework’s flexibility by allowing the implementation of different strategies. As in [7], the default
executor for general-purpose MPC with arbitrary circuits creates fibers for all gates which are then
executed by a thread pool.

MOTION for Neural Networks For evaluating neural networks, we take a different approach:
Many neural networks have a simple or even straight-line topology and are composed from a small
set of different tensor operations (e.g., linear and pooling layers and activation functions). Hence,
instead of compiling their descriptions into low-level circuits, we provide optimized building blocks
that directly implement common high-level operations on shared tensors. The tensor operations
are more computationally complex than the primitive operations of a circuit, but they have a very
regular structure, e.g., a single activation function is applied to all elements of a tensor. We exploit
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this knowledge and use a specialized executor to evaluate the tensor operations sequentially, while
parallelizing the operations themselves with multi-threading and SIMD operations.

We enable interoperability with industry standard deep learning frameworks such as TensorFlow and
PyTorch by supporting the ONNX file format [37], an open standard for deep learning models. Our
new OnnxAdapter based on the ONNX library2 can parse the description of neural networks and
automatically constructs the respective tensor operations in MOTION. This makes it easy to privately
evaluate models built with common deep learning frameworks. Moreover, we built tools to display
information about the neural network and estimate the costs of a secure evaluation.

4 Performance Evaluation

We extensively benchmarked our framework and compare the performance with prior and concurrent
work. See § C.1 for more details in the context of generic 2PC.

Neural Networks We use the CryptoNets [16] and MiniONN [33] networks for the MNIST [30]
dataset to compare the performance of our neural network building blocks with generic 2PC of hybrid
circuits generated by HyCC [9]. In almost every case, our dedicated building blocks outperform the
generic 2PC implementations of our framework, ABY [13], and MOTION [7]. Detailed benchmark
results are given in § C.2.

To examine the performance on larger neural networks, we use the MiniONN [33] neural network
for the CIFAR-10 [29] dataset, and compare the online run-times using our neural network building
blocks with results for GAZELLE [24], DELPHI [35], and CrypTFlow2 [41].3 The results (see
§ C.2) show that the recently published CrypTFlow2 offers clearly the best performance, but the
performance with our building blocks is comparable to that of GAZELLE and DELPHI.

ABY vs. ABY2.0 According to our experiments, SIMD seems to be even more important for a
good performance with the ABY2.0 secret-sharing-based protocols than for GMW. Without SIMD,
the function-dependent setup phase is a clear drawback of the ABY2.0 sharings, and can result in
significantly slower setup phases compared to GMW. With SIMD, the differences in the setup phase
diminish. Sometimes, the measured setup run-time was even lower for ABY2.0 compared to the
ABY protocols.

For the evaluation of circuits with the generic 2PC implementation, there is no clear winner in the
online phase: In most of our experiments, the ABY protocols are better in some settings, and the
ABY2.0 protocols are better in other settings. An exception is the CryptoNets [16] benchmark, where
the ABY2.0 protocols perform almost always worse than the ABY protocols in the online phase.

When evaluating a neural network using our specialized building blocks, the ABY2.0 protocols are
the best choice regarding the online run-times. This is observed best when benchmarking ReLU
operations and the two MiniONN [33] networks.
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Appendix A Protocols

Here, we give a high-level overview of the protocols covered and implemented in this work. The
protocols are secure in the semi-honest security setting, i.e., corrupted parties follow the protocol,
but try to learn additional information. We split the protocols into a setup and an online phase. The
former is independent of the parties’ inputs and can be precomputed before the actual computation
starts.

A.1 Auxiliary Protocols

Secret Sharing Secret sharing denotes a technique to split a secret into multiple shares such that it
can be reconstructed from certain subsets of the shares. Important in our case is additive secret sharing
over Z2` : To share x ∈ Z2` , a dealer samples x1, . . . , xN ∈R Z2` uniformly at random such that
x = x1 + · · ·+xN , and distributes the xi among the parties. This is denoted as 〈x〉A = (x1, . . . , xN ).
Given all shares the original secret can be recovered.

Oblivious Transfer Oblivious transfer (OT) [15] is a two-party protocol between a sender and a
receiver. The sender inputs two messages m0,m1 and the receiver inputs a bit b. Then the receiver
obtains mb without learning m1−b and the sender does not learn anything about b. There exist many
variants of OT, e.g., correlated OT (C-OT) where the messages are chosen randomly under some
correlation supplied by the sender [3].

Multiplication Protocols C-OT can be seen as computing a secret sharing of the product of two
private bits. This has been extended to multiplication of integers, and generalized to products of
vectors and matrices [17, 13, 36]. Moreover, two multiplication with private inputs can be combined
to obtain a multiplication with two shared inputs. The arithmetic protocols covered below make
heavy use of such OT-based multiplications.

A.2 General-Purpose 2PC

General-purpose 2PC protocols allow us to securely evaluate functionalities encoded in the form of
Boolean or arithmetic circuits. Here we use and combine five existing protocols (denoted with Y , A,
B, α, and β) with different properties.

Yao’s Protocol (Y ) This is a 2PC protocol for Boolean circuits [47, 46]. One party, the garbler,
creates an encoding of the circuit, the garbled circuit, and sends it to the second party, the evaluator.
Given an encoding of the circuit inputs, the latter is able to obliviously evaluate circuit to obtain an
encoded output. This can be decoded with help of decoding information generated by the garbler.

To this end, the garbler creates for each circuit wire w two keys k0w, k
1
w. For each gate g with

input wires a, b and output wire c it creates a garbled table where for each possible combination of
input values α, β ∈ {0, 1} the keys kαa and kβb are used to encrypt kg(α,β)c . During evaluation the
evaluator obtains kbw if the wire holds value b (denoted as 〈b〉Y ). Hence, given one key for each
circuit inputs, the evaluator can evaluate the whole circuit while only seeing random-looking keys
instead of the plain values. We implement Yao’s protocol with then state-of-the-art optimizations
such as FreeXOR [27], fixed-key AES [6, 20], and Half-gates [48].4

4This was considered state-of-the-art until the recently published [43].
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Figure 1: Overview of the protocol conversions. Dashed lines denote a conversion via a third
protocol.

GMW (A/B) The GMW protocol [18] is a generic MPC protocol for Boolean (B) and arithmetic
(A) circuits in the full-threshold, semi-honest security setting. We consider GMW over the ring Z2` ,
which for ` = 1 is equivalent to bits {0, 1} with ⊕ and ∧. The following description uses arithmetic
notation, but unless stated otherwise holds also for the Boolean case.

A value x ∈ Z2` is shared using additive secret sharing 〈x〉A. In the Boolean domain this is denoted
as 〈x〉B . Since the secret sharing scheme is linearly homomorphic, we can compute the sum of
shared values by adding the shares locally. A multiplication 〈z〉A ← 〈x〉A · 〈y〉A on the other hand
requires interaction among the parties. As outlined in § A.1, shared values can be multiplied e.g. with
OT-based multiplication protocols. Here, we use these to precompute multiplication triples (MTs) [5],
i.e., random shared triples (〈a〉A, 〈b〉A, 〈c〉A) such that ab = c, in the setup phase. Then, during the
online phase the inputs x, y are masked with a, b from the MT, and then reconstructed. Finally a
sharing of z can be computed using a linear combination of shared values with public coefficients.
We also support mixed products of a bit 〈b〉B and a number 〈n〉A.

ABY2.0 Sharing (α/β) Recently, ABY2.0 [38] was published as a successor protocol suite to the
original ABY protocols [13]. They also combine Yao’s protocol (Y ) with a Boolean and an arithmetic
secret-sharing-based protocol. Instead of using GMW for the latter, they designed a new protocols
which “uses a different perspective of [Beaver’s circuit randomization] technique” [38]. Furthermore,
they designed a new set of conversion protocols and building blocks for various applications. To
distinguish the new protocols, we use the term ABY2.0 sharing in this work and denote them with α
and β.

To share a value x ∈ Z2` , it is masked with a random value ∆x ← x+ δx and the mask is additively
secret shared among the parties: 〈x〉α = (∆x; 〈δx〉A). Note that δx can be generated independently
of x during the setup phase. Addition works locally by adding the shares. For multiplications
〈z〉α ← 〈x〉α · 〈y〉α, we need to compute 〈δx · δy〉A ← 〈δx〉A · 〈δy〉A in the setup phase. Then, in
the online phase we can locally compute 〈z〉A, and convert this to 〈z〉α by masking it with δz and
reconstructing the ∆z = z + δz . Compared to GMW, only one reconstruction is needed, which
halves the communication during the online phase.

We also support special products between shared bits and numbers 〈b · n〉α ← 〈b〉β · 〈n〉α and
〈b1 · b2〉α ← 〈b1〉β · 〈b1〉β and improve the setup phase compared to [38].

Comparison The three protocols have different properties: Yao’s protocol has a constant round
complexity, whereas the other protocols need one round of interaction for each non-linear layer of the
circuit. On the other hand transferring the garbled circuit needs a larger amount of communication.
Hence, which approach performs better depends on the available network bandwidth and latency. For
a more detailed comparison of the ABY and ABY2.0 protocol suites, see § 2.
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Conversion Protocols To combine the different protocols and exploit their respective advantages,
we provide conversion protocols between the five kinds of sharings. Figure 1 gives an overview of
the conversions. Some of them are implemented as a composition of two other protocols, e.g., for
A→ B we take the path A→ Y → B.

A.3 Building Blocks for Neural Networks

Neural networks often have a very regular structure. The input is a tensor, a multi-dimensional
array, which gets transformed by a sequence of different layers. Common are linear and pooling
layers combined with (non-linear) activation functions. [19] We use the generic protocols (§ A.2) to
construct building blocks to securely evaluate these layers on shared inputs. Since some are more
efficiently computed with an arithmetic protocol and others with a Boolean protocol, we use the
conversions (§ A.2) to change the representation of the data as necessary.

Fixed-Point Arithmetic Parameters, inputs, and outputs of neural networks are usually represented
by floating-point numbers. While Boolean MPC can be used to evaluate Boolean circuits encoding
the floating-point operations [12], the native operations of arithmetic MPC protocols are usually
more efficient. Therefore, we encode decimal numbers into elements of Z2` using a fixed-point
representation and the truncation protocol by [36] for A-shared values. It involves only local
computation which makes it very efficient. The downside is that this protocol does not achieve perfect
correctness and errors can be introduced.

Linear Layers For fully-connected, and convolution layers – both are essentially matrix multipli-
cations, we use the arithmetic sharings A and α. While we can build matrix multiplication circuits
out of additions and multiplications, it is more efficient to operate directly on (element-wise shared)
matrices. The multiplication in both sharings generalize naturally to the multiplication of (element-
wise shared) matrices: In GMW (A), we use multiplication triples (〈A〉A, 〈B〉A, 〈C〉A) where each
element is a matrix. Then secure matrix multiplication works exactly as integer multiplication, but
using element-wise addition and matrix multiplication instead of integer addition and multiplication,
respectively [36]. This way, we mask each entry only once, instead of doing it separately for each
integer multiplication, which saves communication. In the same fashion, the integer multiplication in
the α sharing, can be generalized to matrix multiplication [38]. Then, ∆X, δX etc. are also matrices
of appropriate size.

ReLU The ReLU operation (ReLU(x) = max(0, x)) is a commonly used activation function.
There are different approaches to compute a ReLU layer. First, note that, since the most significant bit
msb(x) encodes the sign of a number x in twos-complement, one can write ReLU(x) = ¬msb(x) ·x.
Thus, the problem can be reduced to obtaining msb(x) and computing the product. The MSB can be
computed either by converting the whole share into a Boolean sharing or via specialized bit extraction
protocols (e.g. [11]).

MaxPool To evaluate a MaxPool layer, we use a Boolean sharing (Y , B, or β) because of the
required comparisons. For each position of the window, the maximum is computed as follows: The
circuit consists of a balanced binary tree where each node is comprised of a > comparison circuit
connected to a multiplexer such that the maximum of the input values is forwarded towards the root
of the tree. For the comparison, either size-optimized (for Y ) or depth-optimized (for B, β) circuits
are used.

AvgPool AveragePool is a linear operation, consisting of a summation and an element-wise division
through the window (or kernel) size k. Since the window size k is part of the functionality, and, thus,
publicly known, we can write the latter as a multiplication with the constant 1/k. However, since
1/k < 1 for all non-trivial cases, we need to take the fixed-point representation into account, and
execute a truncation protocol.
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Appendix B Extending the MOTION Framework

This work builds upon and extends the MOTION framework for mixed-protocol multi-party com-
putation [7]. For more information about the original architecture of the framework, the reader is
referred to [7, § 4]. In the following we give a short overview of our extensions.

Communication The communication subsystem of the MOTION framework was redesigned to
allow easy-to-use and flexible asynchronous message-based communication. The challenge is that
multiple messages might concurrently be sent and expected on the sender and the receiver side,
respectively. So the system needs to make sure that every message ends up in the right place without
being able to rely on an order among the messages. Also – in the multi-party setting – messages
may be sent to and received from multiple parties. A low-level transport implements the actual
sending and receiving of messages between two parties, e.g., via TCP. The details of connection
setup and use as well as the used libraries are completely hidden from the user. Thus, the framework
can be easily adapted to use other transports instead, e.g., WebSockets or QUIC. The high-level
CommunicationLayer offers a simple but flexible API for sending messages to other parties. The
methods return immediately while the sending itself happens in the background. Received messages
are passed to message handlers which define how incoming messages of certain types are processed.
For synchronization between all parties, we provide a builtin barrier as synchronization mechanism.

Protocol Implementation Based on the terminology of circuits, two of the main concepts in the
MOTION framework [7] are gates and wires. Both are abstract interfaces which have been redesigned
to provide a cleaner API and reduced memory overhead. Wires are the passive components and hold
the local share of a secret-shared value. They can be seen as low-level variables and have a builtin
synchronization mechanism allowing a consumer to safely wait for it to obtain its value. A gate object
represents the active part of the computation encapsulating the protocol for a single operation, e.g.,
a primitive operation in a circuit or a tensor operation in a neural network. We introduce so-called
protocol providers, which bundle all the required functionality for a 2PC protocol with a common
interface. Hence, circuits can be constructed in a completely generic way: Given wires and an
identifier of an operation, a protocol provider will construct the corresponding gate and return the
output wire.

Backend MOTION [7] gathers all required components in so-called backend classes. The original
Backend in MOTION [7] contained a lot of unrelated functionality and was tightly coupled with the
rest of the framework. Now, the responsibility of the new backend classes has been reduced such that
they primarily construct and coordinate the required components (e.g., provider of OTs and protocols)
for their use-cases. Depending on the setting, different implementations for certain protocol can be
chosen. Currently, there are backends for the two-party and the multi-party settings, as well as a
specialized backend for evaluating tensor operations in neural networks.

Execution The encapsulation of the primitive operation in gate objects allows the decoupling of
the protocols description and its evaluation strategy. MOTION [7] uses fibers to evaluate gates, i.e.,
threads that run in user space opposed to standard threads managed by the operating system kernel.
They need less resources, and switching between fibers is done completely in user space. This offers
additional flexibility, e.g., allows using custom schedulers and allocators, and can yield improved
performance compared to threads [28]. We extracted the execution code into executor classes, that
takes a collection of gates and executes them according to some strategy, so that different strategies
can be implemented in different executors. As in [7], the executor for general-purpose MPC with
arbitrary circuits creates fibers for all gates which are then executed by a thread pool. For neural
networks, we use a different approach: Their computation graphs are often very simple or even
straight-line, and the tensor operations are more complex than the primitive operations in circuits.
Hence, we evaluate the gates sequentially while parallelizing the gate evaluations themselves.

Statistics MOTION [7] records detailed run-times during the execution, and computes the mean,
median, and standard deviation for repeated experiments. We added support to output this data
in the JSON format together with communication statistics and metadata of the experiments (e.g.,
experiment name, hostname, command line arguments, etc.). This makes it easy to import the data in
other software for further analysis.
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Implemented Protocols MOTION [7] was released with three protocols for generic MPC with an
arbitrary number of parties. This work additionally implements support for the five 2PC protocols
discussed in § A.2. The original OT implementation by [7] was revised and extended, e.g., with
vectorization for C-OT (cf. [36]), and the OT-based multiplication protocols (§ A.1) have been
implemented on top. In addition to the general-purpose protocols, specialized building blocks (§ 2,
§ A.3) have been implemented for the most common operations in neural networks. Depending on the
concrete operations, they are implemented using either the arithmetic or the Boolean 2PC protocols.

File Formats MOTION [7] allows building applications using its C++ interface and can also import
circuits from various simple file formats used in the MPC community [44, 1, 13]. So far, HyCC [9]
circuits were only rudimentary supported via a modified version of the HyCC adapter for ABY by [9].
A new HyCCAdapter has been developed that uses HyCC’s libcircuit to convert the HyCC circuits
into the respective MOTION data structures while hiding this from the MOTION user. Moreover,
a new OnnxAdapter enables support for neural network descriptions provided in the ONNX file
format [37], an open standard for deep learning models. With the ONNX library5, the adapter can
parse the description and automatically construct the respective tensor operations in MOTION. Both
new adapters can be optionally enabled at compile time of the MOTION framework if the respective
libraries are available.

Appendix C Performance Evaluation

C.1 Generic 2PC

Garbling Engine We measure the raw garbling and evaluation performance of our implementation
of the half-gate [48] garbling scheme with fixed-key AES [6, 20] and AES-NI, and benchmark it also
with various circuits of different complexity such as AES-128, SHA-256, ReLU, and comparisons.
It achieves a comparable performance to the EMP-Toolkit [45], and is 1.8× faster when SIMD
operations are enabled. The garbling rate of a single thread is sufficient to saturate a 10 Gbit/s
network links.

Boolean and Hybrid Circuits We use AES-128 and SHA-256, to benchmark the performance of
the Boolean protocols B, β, and Y . Moreover, we use the hybrid circuits for biometric matching
generated by HyCC [9], which are evaluated using a combination of an arithmetic and a Boolean
protocol. In both cases, we compare with the ABY framework [13] and the generic N -party protocols
implemented in MOTION [7]. The overall performances are similar. Without SIMD, ABY [13]
always has the best run-times, which can be explained by the worse parallelization used in the
MOTION framework [7] (see below). With SIMD the performance of MOTION (including this work)
becomes competitive (up to 20× better than ABY during the online phase in the LAN). SIMD is not
supported by the ABY backend for HyCC [9].

Multi-Threading in MOTION MOTION [7] uses fibers to evaluate the gates of a circuit. However,
it had not yet been examined how efficient this approach to parallelization is. We benchmark this
by evaluating the AES-128 circuit with the Boolean protocols. Regardless of the number of threads
the speedup stays below 2 for Yao’s protocol (Y ). For the B and β protocols, we cannot see any
significant speedup. This is likely because Yao’s protocol uses cryptographic operations, whereas
the other protocols use only cheaper bit-wise operations in the gates. We conclude that fibers are a
good and easy-to-use method for implementing more complex protocols that need more computation
and (rounds of) interaction. They are also helpful for prototyping new protocols, but they are not
an efficient parallelization scheme for circuits built of cheap primitive operations. In such cases,
grouping the gates in layers and evaluating these multi-threaded is more advantageous (cf. [13]).

C.2 Neural Networks

Tables 1 and 2 contain our benchmark results for the CryptoNets [16] and MiniONN [33] neural
networks for the MNIST dataset [30]. We compare our results with ABY [13] and MOTION [7]. In
Table 3, we compare the online run-times for the MiniONN [33] neural network for the CIFAR-10
dataset [29] with GAZELLE [24], DELPHI [35], and CrypTFlow2 [41].

5ONNX: https://github.com/onnx/onnx
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Table 1: Run-times in ms for evaluating the CryptoNets [16] neural network with ReLU using
numbers of bitlength ` = 32. This work with NN Ops uses specialized neural network operations
(§ A.3), whereas all other categories use a hybrid circuit generated using HyCC [9]. With SIMD, 16
copies of the network are evaluated in parallel. All protocols were executed with N = 2 parties, and
the best run-times are marked in bold.

Implementation Protocol LAN WAN

Setup Online Setup Online

A+B 396.3 123.0 2 613.6 607.6ABY [13]
A+ Y 393.1 128.6 2 450.1 572.7

A+B 1 970.9 1 457.8 4 785.8 2 173.1MOTION [7]
A+ Y 2 017.3 1 453.6 4 791.4 2 211.9

A+B 916.9 101.4 2 889.7 279.8MOTION [7] w/ SIMD
A+ Y 897.2 96.8 2 935.9 248.7

A+B 2 221.6 2 075.4 5 961.3 3 059.0
A+ Y 1 962.0 2 177.4 5 474.3 2 805.8
α+ β 3 626.0 3 241.0 7 257.0 3 226.3

this work

α+ Y 3 525.6 3 261.0 7 400.3 3 371.6

A+B 650.9 145.3 2 810.5 263.3
A+ Y 645.5 142.2 2 777.3 223.7
α+ β 572.8 202.3 2 807.6 251.9

this work w/ SIMD

α+ Y 590.1 210.6 2 667.3 254.4

A+B 111.2 11.1 1 005.7 1 047.4
A+ Y 103.4 11.1 1 062.4 858.6
α+ β 129.1 28.1 1 766.7 982.2

this work w/ NN Ops.

α+ Y 136.6 8.7 1 539.4 858.6

Table 2: Run-times in ms for evaluating the MiniONN [33] MNIST neural network using numbers
of bitlength ` = 32. This work with NN Ops uses specialized neural network operations (§ A.3),
whereas all other categories use a hybrid circuit generated using HyCC [9]. With SIMD, 16 copies of
the network are evaluated in parallel. All protocols were executed with N = 2 parties, and the best
run-times are marked in bold.

Implementation Protocol LAN WAN

Setup Online Setup Online

A+B 1 516.3 2 997.2 4 903.5 8 164.1ABY [13]
A+ Y 1 559.0 1 453.5 4 960.0 4 194.1

A+B 6 423.3 49 712.7 10 391.8 46 298.3
A+ Y 16 138.6 15 073.4 19 085.8 16 387.4
α+ β 109 778.9 48 342.2 110 201.4 48 562.7

this work

α+ Y 15 939.9 14 726.1 19 235.7 15 867.0

A+B 1 239.6 3 037.3 5 163.2 2 903.6
A+ Y 1 514.1 936.8 6 129.0 1 467.3
α+ β 7 592.7 3 324.8 9 330.1 2 954.8

this work w/ SIMD

α+ Y 1 315.6 928.6 6 664.4 973.1

A+B 649.7 171.5 4 826.6 5 138.1
A+ Y 523.8 126.7 4 476.5 2 574.9
α+ β 737.0 151.6 6 424.5 4 654.0

this work w/ NN Ops.

α+ Y 676.1 81.8 5 908.9 1 235.7
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Table 3: Online Run-times in ms for evaluating MiniONN [33] CIFAR-10 neural network with
`-bit numbers. The run-time of GAZELLE is taken from the corresponding publication [24], and the
numbers for DELPHI [35] and CrypTFlow2 are taken from the CrypTFlow2 paper [41]. Note that
they were obtained in a different experimental environment. All protocols were executed with N = 2
parties. The best run-times are marked in bold, although different bit sizes ` are used by the different
implementations.

Implementation Protocol ` LAN WAN

GAZELLE [24] A+ Y 60 3 560.0 —
DELPHI [35] A+ Y 41 ≈4 070.0 —
CrypTFlow2 [41] A+OT 41 ≈ 420.0 —

A+B 32 1 167.7 20 773.1
A+ Y 32 1 246.8 34 783.5
α+ β 32 624.2 7 882.5
α+ Y 32 695.6 6 756.2

A+B 64 2 024.6 37 584.9
A+ Y 64 2 231.1 66 187.8
α+ β 64 989.5 11 768.9

this work w/ NN Ops

α+ Y 64 1 226.6 10 591.8
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